These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 2732378)

  • 1. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor.
    Nock L; Trahey GE; Smith SW
    J Acoust Soc Am; 1989 May; 85(5):1819-33. PubMed ID: 2732378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase aberration correction using echo signals from moving targets. II: Experimental system and results.
    Bohs LN; Zhao D; Trahey GE
    Ultrason Imaging; 1992 Apr; 14(2):111-20. PubMed ID: 1604753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction of phase aberrations for sectored annular array ultrasound transducers.
    Gambetti C; Foster SF
    Ultrasound Med Biol; 1993; 19(9):763-76. PubMed ID: 8134977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase aberration correction in two dimensions using a deformable array transducer.
    Ries LL; Smith SW
    Ultrason Imaging; 1995 Jul; 17(3):227-47. PubMed ID: 8772265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Locally Adaptive Phase Aberration Correction (LAPAC) Method for Synthetic Aperture Sequences.
    Chau G; Jakovljevic M; Lavarello R; Dahl J
    Ultrason Imaging; 2019 Jan; 41(1):3-16. PubMed ID: 30222052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of acoustical speckle in the presence of phase aberration. Part I: First order statistics.
    Trahey GE; Smith SW
    Ultrason Imaging; 1988 Jan; 10(1):12-28. PubMed ID: 3291366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of image quality factors for phase aberration correction with diffuse and point targets: theory and experiments.
    Zhao D; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(2):125-32. PubMed ID: 18267566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overdetermined least-squares aberration estimates using common-midpoint signals.
    Haun MA; Jones DL; O'Brien WD
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1205-20. PubMed ID: 15493689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and correction of ultrasonic wavefront distortion based on a multilayer phase-screen model.
    Huang DH; Tsao J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Dec; 49(12):1686-703. PubMed ID: 12546149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A statistical analysis of phase aberration correction using image quality factors in coherent imaging systems.
    Zhao D; Trahey GE
    IEEE Trans Med Imaging; 1992; 11(3):446-52. PubMed ID: 18222886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A speckle target adaptive imaging technique in the presence of distributed aberrations.
    Ng GC; Freiburger PD; Walker WF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):140-51. PubMed ID: 18244111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Errors in ultrasonic scatterer size estimates due to phase and amplitude aberration.
    Gerig A; Zagzebski J
    J Acoust Soc Am; 2004 Jun; 115(6):3244-52. PubMed ID: 15237849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase aberration simulation study of MRgFUS breast treatments.
    Farrer AI; Almquist S; Dillon CR; Neumayer LA; Parker DL; Christensen DA; Payne A
    Med Phys; 2016 Mar; 43(3):1374-84. PubMed ID: 26936722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of acoustical speckle in the presence of phase aberration. Part II: Correlation lengths.
    Smith SW; Trahey GE; Hubbard SM; Wagner RF
    Ultrason Imaging; 1988 Jan; 10(1):29-51. PubMed ID: 3291367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental results with a real-time adaptive ultrasonic imaging system for viewing through distorting media.
    Trahey G; Zhao D; Miglin JA; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):418-27. PubMed ID: 18285059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speckle coherence and implications for adaptive imaging.
    Walker WF; Trahey GE
    J Acoust Soc Am; 1997 Apr; 101(4):1847-58. PubMed ID: 9104014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.
    Shapoori K; Sadler J; Wydra A; Malyarenko EV; Sinclair AN; Maev RG
    IEEE Trans Biomed Eng; 2015 May; 62(5):1253-64. PubMed ID: 25423646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refraction correction in 3D transcranial ultrasound imaging.
    Lindsey BD; Smith SW
    Ultrason Imaging; 2014 Jan; 36(1):35-54. PubMed ID: 24275538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.