BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27323931)

  • 1. Vessel-like channels supported by poly-l-lysine tubes.
    Mori N; Morimoto Y; Takeuchi S
    J Biosci Bioeng; 2016 Dec; 122(6):753-757. PubMed ID: 27323931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.
    Ng WL; Goh MH; Yeong WY; Naing MW
    Biomater Sci; 2018 Feb; 6(3):562-574. PubMed ID: 29383354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular-like network prepared using hollow hydrogel microfibers.
    Takei T; Kitazono Z; Ozuno Y; Yoshinaga T; Nishimata H; Yoshida M
    J Biosci Bioeng; 2016 Mar; 121(3):336-40. PubMed ID: 26199226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel control of gel fraction and enhancement of bonding strength for constructing 3D architecture of tissue engineering scaffold with alginate tubular fiber.
    Li Y; Liu Y; Li S; Liang G; Jiang C; Hu Q
    J Biosci Bioeng; 2016 Jan; 121(1):111-116. PubMed ID: 26073314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-controlled high cell-density microcapsules by electrodeposition.
    Liu Z; Takeuchi M; Nakajima M; Hasegawa Y; Huang Q; Fukuda T
    Acta Biomater; 2016 Jun; 37():93-100. PubMed ID: 27045348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering gelatin-based alginate/carbon nanotubes blend bioink for direct 3D printing of vessel constructs.
    Li L; Qin S; Peng J; Chen A; Nie Y; Liu T; Song K
    Int J Biol Macromol; 2020 Feb; 145():262-271. PubMed ID: 31870866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers.
    Takei T; Sakai S; Yokonuma T; Ijima H; Kawakami K
    Biotechnol Prog; 2007; 23(1):182-6. PubMed ID: 17269686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells.
    Ivanovska J; Zehnder T; Lennert P; Sarker B; Boccaccini AR; Hartmann A; Schneider-Stock R; Detsch R
    Tissue Eng Part C Methods; 2016 Jul; 22(7):708-15. PubMed ID: 27269631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration.
    Deepthi S; Nivedhitha Sundaram M; Deepti Kadavan J; Jayakumar R
    Carbohydr Polym; 2016 Nov; 153():492-500. PubMed ID: 27561521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic scaffolds with three-dimensional undulated microtopographies.
    Yu JZ; Korkmaz E; Berg MI; LeDuc PR; Ozdoganlar OB
    Biomaterials; 2017 Jun; 128():109-120. PubMed ID: 28325683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs.
    Tseng TC; Hsieh FY; Theato P; Wei Y; Hsu SH
    Biomaterials; 2017 Jul; 133():20-28. PubMed ID: 28414976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle.
    Attalla R; Puersten E; Jain N; Selvaganapathy PR
    Biofabrication; 2018 Dec; 11(1):015012. PubMed ID: 30537688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell specificity of magnetic cell seeding approach to hydrogel colonization.
    Singh R; Wieser A; Reakasame S; Detsch R; Dietel B; Alexiou C; Boccaccini AR; Cicha I
    J Biomed Mater Res A; 2017 Nov; 105(11):2948-2957. PubMed ID: 28639348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.
    Zhang W; Huang G; Ng K; Ji Y; Gao B; Huang L; Zhou J; Lu TJ; Xu F
    Biomater Sci; 2018 Mar; 6(4):885-892. PubMed ID: 29511758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels.
    Sakai S; Yamaguchi S; Takei T; Kawakami K
    Biomacromolecules; 2008 Jul; 9(7):2036-41. PubMed ID: 18537290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.