BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1388 related articles for article (PubMed ID: 27324127)

  • 1. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration.
    Talman V; Ruskoaho H
    Cell Tissue Res; 2016 Sep; 365(3):563-81. PubMed ID: 27324127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological inhibition of the mitochondrial NADPH oxidase 4/PKCα/Gal-3 pathway reduces left ventricular fibrosis following myocardial infarction.
    Asensio-Lopez MDC; Lax A; Fernandez Del Palacio MJ; Sassi Y; Hajjar RJ; Pascual-Figal DA
    Transl Res; 2018 Sep; 199():4-23. PubMed ID: 29753686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nestin+ cells and healing the infarcted heart.
    Calderone A
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H1-9. PubMed ID: 22003051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infiltrated cardiac lipids impair myofibroblast-induced healing of the myocardial scar post-myocardial infarction.
    Vilahur G; Casani L; Juan-Babot O; Guerra JM; Badimon L
    Atherosclerosis; 2012 Oct; 224(2):368-76. PubMed ID: 22882904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish.
    González-Rosa JM; Martín V; Peralta M; Torres M; Mercader N
    Development; 2011 May; 138(9):1663-74. PubMed ID: 21429987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibroblasts in myocardial infarction: a role in inflammation and repair.
    Shinde AV; Frangogiannis NG
    J Mol Cell Cardiol; 2014 May; 70():74-82. PubMed ID: 24321195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities.
    Frangogiannis NG
    Mol Aspects Med; 2019 Feb; 65():70-99. PubMed ID: 30056242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction.
    Venugopal H; Hanna A; Humeres C; Frangogiannis NG
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cardiac fibroblasts in post-myocardial heart tissue repair.
    Chistiakov DA; Orekhov AN; Bobryshev YV
    Exp Mol Pathol; 2016 Oct; 101(2):231-240. PubMed ID: 27619160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis.
    Prabhu SD; Frangogiannis NG
    Circ Res; 2016 Jun; 119(1):91-112. PubMed ID: 27340270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction.
    Chablais F; Veit J; Rainer G; Jaźwińska A
    BMC Dev Biol; 2011 Apr; 11():21. PubMed ID: 21473762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syndecans in heart fibrosis.
    Lunde IG; Herum KM; Carlson CC; Christensen G
    Cell Tissue Res; 2016 Sep; 365(3):539-52. PubMed ID: 27411689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates.
    Palmquist-Gomes P; Pérez-Pomares JM; Guadix JA
    Heart Fail Rev; 2019 Jan; 24(1):133-142. PubMed ID: 30421074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKα1.
    Noppe G; Dufeys C; Buchlin P; Marquet N; Castanares-Zapatero D; Balteau M; Hermida N; Bouzin C; Esfahani H; Viollet B; Bertrand L; Balligand JL; Vanoverschelde JL; Beauloye C; Horman S
    J Mol Cell Cardiol; 2014 Sep; 74():32-43. PubMed ID: 24805196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galectin-3 and post-myocardial infarction cardiac remodeling.
    Meijers WC; van der Velde AR; Pascual-Figal DA; de Boer RA
    Eur J Pharmacol; 2015 Sep; 763(Pt A):115-21. PubMed ID: 26101067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ameliorating the Fibrotic Remodeling of the Heart through Direct Cardiac Reprogramming.
    Bektik E; Fu JD
    Cells; 2019 Jul; 8(7):. PubMed ID: 31277520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wharton's jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction.
    Zhang W; Liu XC; Yang L; Zhu DL; Zhang YD; Chen Y; Zhang HY
    Coron Artery Dis; 2013 Nov; 24(7):549-58. PubMed ID: 23892469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-486 improves fibrotic activity in myocardial infarction by targeting SRSF3/p21-Mediated cardiac myofibroblast senescence.
    Chen H; Lv L; Liang R; Guo W; Liao Z; Chen Y; Zhu K; Huang R; Zhao H; Pu Q; Yuan Z; Zeng Z; Zheng X; Feng S; Qi X; Cai D
    J Cell Mol Med; 2022 Oct; 26(20):5135-5149. PubMed ID: 36117396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble guanylyl cyclase activation improves progressive cardiac remodeling and failure after myocardial infarction. Cardioprotection over ACE inhibition.
    Fraccarollo D; Galuppo P; Motschenbacher S; Ruetten H; Schäfer A; Bauersachs J
    Basic Res Cardiol; 2014 Jul; 109(4):421. PubMed ID: 24907870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction.
    Wang Z; Long DW; Huang Y; Chen WCW; Kim K; Wang Y
    Acta Biomater; 2019 Mar; 87():140-151. PubMed ID: 30710713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 70.