These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27324157)

  • 1. Ion Channels Made from a Single Membrane-Spanning DNA Duplex.
    Göpfrich K; Li CY; Mames I; Bhamidimarri SP; Ricci M; Yoo J; Mames A; Ohmann A; Winterhalter M; Stulz E; Aksimentiev A; Keyser UF
    Nano Lett; 2016 Jul; 16(7):4665-9. PubMed ID: 27324157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating.
    Yoo J; Aksimentiev A
    J Phys Chem Lett; 2015 Dec; 6(23):4680-7. PubMed ID: 26551518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane Activity of a DNA-Based Ion Channel Depends on the Stability of Its Double-Stranded Structure.
    Morzy D; Joshi H; Sandler SE; Aksimentiev A; Keyser UF
    Nano Lett; 2021 Nov; 21(22):9789-9796. PubMed ID: 34767378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance.
    Anishkin A; Kamaraju K; Sukharev S
    J Gen Physiol; 2008 Jul; 132(1):67-83. PubMed ID: 18591417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the function of ion channels by computational electrophysiology simulations.
    Kutzner C; Köpfer DA; Machtens JP; de Groot BL; Song C; Zachariae U
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1741-52. PubMed ID: 26874204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water channel formation and ion transport in linear and branched lipid bilayers.
    Wang S; Larson RG
    Phys Chem Chem Phys; 2014 Apr; 16(16):7251-62. PubMed ID: 24618598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining molecular dynamics and an electrodiffusion model to calculate ion channel conductance.
    Wilson MA; Nguyen TH; Pohorille A
    J Chem Phys; 2014 Dec; 141(22):22D519. PubMed ID: 25494790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.
    Göpfrich K; Zettl T; Meijering AE; Hernández-Ainsa S; Kocabey S; Liedl T; Keyser UF
    Nano Lett; 2015 May; 15(5):3134-8. PubMed ID: 25816075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic lipid membrane channels formed by designed DNA nanostructures.
    Langecker M; Arnaut V; Martin TG; List J; Renner S; Mayer M; Dietz H; Simmel FC
    Science; 2012 Nov; 338(6109):932-6. PubMed ID: 23161995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion conduction through MscS as determined by electrophysiology and simulation.
    Sotomayor M; Vásquez V; Perozo E; Schulten K
    Biophys J; 2007 Feb; 92(3):886-902. PubMed ID: 17114233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes.
    Joshi H; Maiti PK
    Nucleic Acids Res; 2018 Mar; 46(5):2234-2242. PubMed ID: 29136243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
    Lynch CI; Rao S; Sansom MSP
    Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
    Aksimentiev A; Schulten K
    Biophys J; 2005 Jun; 88(6):3745-61. PubMed ID: 15764651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Fusobacterium nucleatum major outer-membrane protein (FomA) forms trimeric, water-filled channels in lipid bilayer membranes.
    Kleivdal H; Benz R; Jensen HB
    Eur J Biochem; 1995 Oct; 233(1):310-6. PubMed ID: 7588760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro synthesis and oligomerization of the mechanosensitive channel of large conductance, MscL, into a functional ion channel.
    Price CE; Kocer A; Kol S; van der Berg JP; Driessen AJ
    FEBS Lett; 2011 Jan; 585(1):249-54. PubMed ID: 21134371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Conductance Transmembrane Porin Made from DNA Origami.
    Göpfrich K; Li CY; Ricci M; Bhamidimarri SP; Yoo J; Gyenes B; Ohmann A; Winterhalter M; Aksimentiev A; Keyser UF
    ACS Nano; 2016 Sep; 10(9):8207-14. PubMed ID: 27504755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain.
    Rothwell SW; Stansfeld PJ; Bragg L; Verkhratsky A; North RA
    J Biol Chem; 2014 Jan; 289(2):618-26. PubMed ID: 24273165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.