These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 27324235)
1. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations. Xu S; Hoshan L; Chen H Bioprocess Biosyst Eng; 2016 Nov; 39(11):1689-702. PubMed ID: 27324235 [TBL] [Abstract][Full Text] [Related]
2. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
3. High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Gagnon M; Hiller G; Luan YT; Kittredge A; DeFelice J; Drapeau D Biotechnol Bioeng; 2011 Jun; 108(6):1328-37. PubMed ID: 21328318 [TBL] [Abstract][Full Text] [Related]
4. Cell culture and gene transcription effects of copper sulfate on Chinese hamster ovary cells. Qian Y; Khattak SF; Xing Z; He A; Kayne PS; Qian NX; Pan SH; Li ZJ Biotechnol Prog; 2011 Jul; 27(4):1190-4. PubMed ID: 21595052 [TBL] [Abstract][Full Text] [Related]
5. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
6. Feed development for fed-batch CHO production process by semisteady state analysis. Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108 [TBL] [Abstract][Full Text] [Related]
7. Effects of copper on CHO cells: cellular requirements and product quality considerations. Yuk IH; Russell S; Tang Y; Hsu WT; Mauger JB; Aulakh RP; Luo J; Gawlitzek M; Joly JC Biotechnol Prog; 2015; 31(1):226-38. PubMed ID: 25311542 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. Toussaint C; Henry O; Durocher Y J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123 [TBL] [Abstract][Full Text] [Related]
9. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Chee Furng Wong D; Tin Kam Wong K; Tang Goh L; Kiat Heng C; Gek Sim Yap M Biotechnol Bioeng; 2005 Jan; 89(2):164-77. PubMed ID: 15593097 [TBL] [Abstract][Full Text] [Related]
10. Chemical inhibitors of hexokinase-2 enzyme reduce lactate accumulation, alter glycosylation processing, and produce altered glycoforms in CHO cell cultures. Naik HM; Kumar S; Reddy JV; Gonzalez JE; McConnell BO; Dhara VG; Wang T; Yu M; Antoniewicz MR; Betenbaugh MJ Biotechnol Bioeng; 2023 Sep; 120(9):2559-2577. PubMed ID: 37148536 [TBL] [Abstract][Full Text] [Related]
11. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Zhang A; Tsang VL; Moore B; Shen V; Huang YM; Kshirsagar R; Ryll T Biotechnol Bioeng; 2015 Dec; 112(12):2495-504. PubMed ID: 26108810 [TBL] [Abstract][Full Text] [Related]
12. Process intensification to produce a difficult-to-express therapeutic enzyme by high cell density perfusion or enhanced fed-batch. Särnlund S; Jiang Y; Chotteau V Biotechnol Bioeng; 2021 Sep; 118(9):3533-3544. PubMed ID: 33914903 [TBL] [Abstract][Full Text] [Related]
13. Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures. Zhang X; Jiang R; Lin H; Xu S Biotechnol Prog; 2020 Jul; 36(4):e2975. PubMed ID: 32012447 [TBL] [Abstract][Full Text] [Related]
14. Pre-stage perfusion and ultra-high seeding cell density in CHO fed-batch culture: a case study for process intensification guided by systems biotechnology. Stepper L; Filser FA; Fischer S; Schaub J; Gorr I; Voges R Bioprocess Biosyst Eng; 2020 Aug; 43(8):1431-1443. PubMed ID: 32266469 [TBL] [Abstract][Full Text] [Related]
15. Considerations on the lactate consumption by CHO cells in the presence of galactose. Altamirano C; Illanes A; Becerra S; Cairó JJ; Gòdia F J Biotechnol; 2006 Oct; 125(4):547-56. PubMed ID: 16822573 [TBL] [Abstract][Full Text] [Related]
16. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
17. Tuning metabolic efficiency for increased product yield in high titer fed-batch Chinese hamster ovary cell culture. Helfer A; Gros S; Kolwyck D; Karst DJ Biotechnol Prog; 2023; 39(3):e3327. PubMed ID: 36700684 [TBL] [Abstract][Full Text] [Related]
18. Developing an ultra-intensified fed-batch cell culture process with greatly improved performance and productivity. Xiang S; Zhang J; Yu L; Tian J; Tang W; Tang H; Xu K; Wang X; Cui Y; Ren K; Cao W; Su Y; Zhou W Biotechnol Bioeng; 2024 Feb; 121(2):696-709. PubMed ID: 37994547 [TBL] [Abstract][Full Text] [Related]
19. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326 [TBL] [Abstract][Full Text] [Related]
20. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Handlogten MW; Lee-O'Brien A; Roy G; Levitskaya SV; Venkat R; Singh S; Ahuja S Biotechnol Bioeng; 2018 Jan; 115(1):126-138. PubMed ID: 28941283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]