These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27324438)

  • 1. Control efficacy of complex networks.
    Gao XD; Wang WX; Lai YC
    Sci Rep; 2016 Jun; 6():28037. PubMed ID: 27324438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical controllability of complex networks.
    Wang LZ; Chen YZ; Wang WX; Lai YC
    Sci Rep; 2017 Jan; 7():40198. PubMed ID: 28074900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target control of complex networks.
    Gao J; Liu YY; D'Souza RM; Barabási AL
    Nat Commun; 2014 Nov; 5():5415. PubMed ID: 25388503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact controllability of complex networks.
    Yuan Z; Zhao C; Di Z; Wang WX; Lai YC
    Nat Commun; 2013; 4():2447. PubMed ID: 24025746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllability of deterministic networks with the identical degree sequence.
    Ma X; Zhao H; Wang B
    PLoS One; 2015; 10(5):e0127545. PubMed ID: 26020920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal pinning controllability of complex networks: dependence on network structure.
    Jalili M; Askari Sichani O; Yu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012803. PubMed ID: 25679653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the number of driver nodes for controlling a Boolean network when the targets are restricted to attractors.
    Hou W; Ruan P; Ching WK; Akutsu T
    J Theor Biol; 2019 Feb; 463():1-11. PubMed ID: 30543810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal localization of diffusion sources in complex networks.
    Hu ZL; Han X; Lai YC; Wang WX
    R Soc Open Sci; 2017 Apr; 4(4):170091. PubMed ID: 28484635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal framework for edge controllability of complex networks.
    Pang SP; Wang WX; Hao F; Lai YC
    Sci Rep; 2017 Jun; 7(1):4224. PubMed ID: 28652604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllability of complex networks.
    Liu YY; Slotine JJ; Barabási AL
    Nature; 2011 May; 473(7346):167-73. PubMed ID: 21562557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State feedback control design for Boolean networks.
    Liu R; Qian C; Liu S; Jin YF
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):70. PubMed ID: 27586140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimum steering node set of complex networks and its applications to biomolecular networks.
    Wu L; Li M; Wang J; Wu FX
    IET Syst Biol; 2016 Jun; 10(3):116-23. PubMed ID: 27187990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of input node placement in the controllability of structural brain networks.
    Alizadeh Darbandi SS; Fornito A; Ghasemi A
    Sci Rep; 2024 Mar; 14(1):6902. PubMed ID: 38519624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network controllability is determined by the density of low in-degree and out-degree nodes.
    Menichetti G; Dall'Asta L; Bianconi G
    Phys Rev Lett; 2014 Aug; 113(7):078701. PubMed ID: 25170736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient algorithm for finding all possible input nodes for controlling complex networks.
    Zhang X; Han J; Zhang W
    Sci Rep; 2017 Sep; 7(1):10677. PubMed ID: 28878394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target controllability with minimal mediators in complex biological networks.
    Ebrahimi A; Nowzari-Dalini A; Jalili M; Masoudi-Nejad A
    Genomics; 2020 Nov; 112(6):4938-4944. PubMed ID: 32905831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.
    Li Y; Gong G; Li N
    PLoS One; 2018; 13(3):e0193827. PubMed ID: 29554140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllability of flow-conservation networks.
    Zhao C; Zeng A; Jiang R; Yuan Z; Wang WX
    Phys Rev E; 2017 Jul; 96(1-1):012314. PubMed ID: 29347124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllability analysis of networks.
    Lombardi A; Hörnquist M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056110. PubMed ID: 17677136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.