BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 27324845)

  • 21. Caldesmon freezes the structure of actin filaments during the actomyosin ATPase cycle.
    Borovikov YS; Kulikova N; Pronina OE; Khaimina SS; Wrzosek A; Dabrowska R
    Biochim Biophys Acta; 2006 Jun; 1764(6):1054-62. PubMed ID: 16713410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The osmotic properties and free energy of formation of the actomyosin rigor complexes from rabbit muscle.
    Magri E; Cuneo P; Trombetta G; Grazi E
    Eur J Biochem; 1996 Jul; 239(1):165-71. PubMed ID: 8706702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complementary Use of Electron Cryomicroscopy and X-Ray Crystallography: Structural Studies of Actin and Actomyosin Filaments.
    Fujii T; Namba K
    Adv Exp Med Biol; 2018; 1105():25-42. PubMed ID: 30617822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties.
    Nishizaka T; Seo R; Tadakuma H; Kinosita K; Ishiwata S
    Biophys J; 2000 Aug; 79(2):962-74. PubMed ID: 10920026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural characterization of the binding of Myosin*ADP*Pi to actin in permeabilized rabbit psoas muscle.
    Xu S; Gu J; Belknap B; White H; Yu LC
    Biophys J; 2006 Nov; 91(9):3370-82. PubMed ID: 16905611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperative rigor binding of myosin to actin is a function of F-actin structure.
    Orlova A; Egelman EH
    J Mol Biol; 1997 Feb; 265(5):469-74. PubMed ID: 9048941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural dynamics of the actin-myosin interface by site-directed spectroscopy.
    Korman VL; Anderson SE; Prochniewicz E; Titus MA; Thomas DD
    J Mol Biol; 2006 Mar; 356(5):1107-17. PubMed ID: 16406406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actomyosin Complex.
    Pepper I; Galkin VE
    Subcell Biochem; 2022; 99():421-470. PubMed ID: 36151385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex.
    Miller CJ; Harris D; Weaver R; Ermentrout GB; Davidson LA
    PLoS Comput Biol; 2018 Sep; 14(9):e1006344. PubMed ID: 30222728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Actin and the actomyosin interface: a review.
    dos Remedios CG; Moens PD
    Biochim Biophys Acta; 1995 Mar; 1228(2-3):99-124. PubMed ID: 7893731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryo-EM structures reveal specialization at the myosin VI-actin interface and a mechanism of force sensitivity.
    Gurel PS; Kim LY; Ruijgrok PV; Omabegho T; Bryant Z; Alushin GM
    Elife; 2017 Dec; 6():. PubMed ID: 29199952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence against essential roles for subdomain 1 of actin in actomyosin sliding movements.
    Siddique MS; Miyazaki T; Katayama E; Uyeda TQ; Suzuki M
    Biochem Biophys Res Commun; 2005 Jul; 332(2):474-81. PubMed ID: 15910751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability.
    Pospich S; Kumpula EP; von der Ecken J; Vahokoski J; Kursula I; Raunser S
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10636-10641. PubMed ID: 28923924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The actomyosin interface contains an evolutionary conserved core and an ancillary interface involved in specificity.
    Robert-Paganin J; Xu XP; Swift MF; Auguin D; Robblee JP; Lu H; Fagnant PM; Krementsova EB; Trybus KM; Houdusse A; Volkmann N; Hanein D
    Nat Commun; 2021 Mar; 12(1):1892. PubMed ID: 33767187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Refining the structure of the strongly bound actin-myosin complex by protein docking].
    Shestakov DA; Tsaturian AK
    Biofizika; 2006; 51(1):57-64. PubMed ID: 16521554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex.
    Zheng W
    Proteins; 2010 Feb; 78(3):638-60. PubMed ID: 19790263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces.
    Ishijima A; Kojima H; Higuchi H; Harada Y; Funatsu T; Yanagida T
    Biophys J; 1996 Jan; 70(1):383-400. PubMed ID: 8770215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forces measured with micro-fabricated cantilevers during actomyosin interactions produced by filaments containing different myosin isoforms and loop 1 structures.
    Kalganov A; Shalabi N; Zitouni N; Kachmar LH; Lauzon AM; Rassier DE
    Biochim Biophys Acta; 2013 Mar; 1830(3):2710-9. PubMed ID: 23671932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-organization of actin networks by a monomeric myosin.
    Saczko-Brack D; Warchol E; Rogez B; Kröss M; Heissler SM; Sellers JR; Batters C; Veigel C
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8387-E8395. PubMed ID: 27956608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: a molecular dynamics study.
    Liu Y; Scolari M; Im W; Woo HJ
    Proteins; 2006 Jul; 64(1):156-66. PubMed ID: 16645962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.