These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 27324960)
1. Probing the Distribution of Water in a Multi-Component System by Solid-State NMR Spectroscopy. Mistry P; Chakravarty P; Lubach JW Pharm Res; 2016 Oct; 33(10):2470-80. PubMed ID: 27324960 [TBL] [Abstract][Full Text] [Related]
2. Role of excipients in hydrate formation kinetics of theophylline in wet masses studied by near-infrared spectroscopy. Jørgensen AC; Airaksinen S; Karjalainen M; Luukkonen P; Rantanen J; Yliruusi J Eur J Pharm Sci; 2004 Sep; 23(1):99-104. PubMed ID: 15324927 [TBL] [Abstract][Full Text] [Related]
3. Physical stability of crystal hydrates and their anhydrates in the presence of excipients. Salameh AK; Taylor LS J Pharm Sci; 2006 Feb; 95(2):446-61. PubMed ID: 16380975 [TBL] [Abstract][Full Text] [Related]
5. Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation. Airaksinen S; Karjalainen M; Kivikero N; Westermarck S; Shevchenko A; Rantanen J; Yliruusi J AAPS PharmSciTech; 2005 Oct; 6(2):E311-22. PubMed ID: 16353990 [TBL] [Abstract][Full Text] [Related]
6. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers. Zeng XM; MacRitchie HB; Marriott C; Martin GP Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863 [TBL] [Abstract][Full Text] [Related]
7. The use of dynamic vapour sorption and near infra-red spectroscopy (DVS-NIR) to study the crystal transitions of theophylline and the report of a new solid-state transition. Vora KL; Buckton G; Clapham D Eur J Pharm Sci; 2004 Jun; 22(2-3):97-105. PubMed ID: 15158895 [TBL] [Abstract][Full Text] [Related]
8. Time domain NMR as a new process monitoring method for characterization of pharmaceutical hydrates. Schumacher SU; Rothenhäusler B; Willmann A; Thun J; Moog R; Kuentz M J Pharm Biomed Anal; 2017 Apr; 137():96-103. PubMed ID: 28107690 [TBL] [Abstract][Full Text] [Related]
9. Application of slurry bridging experiments at controlled water activities to predict the solid-state conversion between anhydrous and hydrated forms using theophylline as a model drug. Ticehurst MD; Storey RA; Watt C Int J Pharm; 2002 Oct; 247(1-2):1-10. PubMed ID: 12429480 [TBL] [Abstract][Full Text] [Related]
10. Effects of excipients on hydrate formation in wet masses containing theophylline. Airaksinen S; Luukkonen P; Jørgensen A; Karjalainen M; Rantanen J; Yliruusi J J Pharm Sci; 2003 Mar; 92(3):516-28. PubMed ID: 12587113 [TBL] [Abstract][Full Text] [Related]
11. Structural studies of a non-stoichiometric channel hydrate using high resolution X-ray powder diffraction, solid-state nuclear magnetic resonance, and moisture sorption methods. Kiang YH; Cheung E; Stephens PW; Nagapudi K J Pharm Sci; 2014 Sep; 103(9):2809-2818. PubMed ID: 24470123 [TBL] [Abstract][Full Text] [Related]
12. Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients. Wikström H; Carroll WJ; Taylor LS Pharm Res; 2008 Apr; 25(4):923-35. PubMed ID: 17896097 [TBL] [Abstract][Full Text] [Related]
13. Polymorphism in anhydrous theophylline--implications on the dissolution rate of theophylline tablets. Phadnis NV; Suryanarayanan R J Pharm Sci; 1997 Nov; 86(11):1256-63. PubMed ID: 9383736 [TBL] [Abstract][Full Text] [Related]
14. RH-temperature stability diagram of α- and β-anhydrous and monohydrate lactose crystalline forms. Allan MC; Grush E; Mauer LJ Food Res Int; 2020 Jan; 127():108717. PubMed ID: 31882085 [TBL] [Abstract][Full Text] [Related]
15. In-line quantification of drug and excipients in cohesive powder blends by near infrared spectroscopy. Liew CV; Karande AD; Heng PW Int J Pharm; 2010 Feb; 386(1-2):138-48. PubMed ID: 19922776 [TBL] [Abstract][Full Text] [Related]
16. Quantification of compaction-induced crystallinity reduction of a pharmaceutical solid using 19F solid-state NMR and powder X-ray diffraction. Liu J; Nagapudi K; Kiang YH; Martinez E; Jona J Drug Dev Ind Pharm; 2009 Aug; 35(8):969-75. PubMed ID: 19360510 [TBL] [Abstract][Full Text] [Related]
17. Water sorption induced transformations in crystalline solid surfaces: characterization by atomic force microscopy. Chen D; Haugstad G; Li ZJ; Suryanarayanan R J Pharm Sci; 2010 Sep; 99(9):4032-41. PubMed ID: 20574999 [TBL] [Abstract][Full Text] [Related]
18. Moisture sorption behavior of selected bulking agents used in lyophilized products. Fakes MG; Dali MV; Haby TA; Morris KR; Varia SA; Serajuddin AT PDA J Pharm Sci Technol; 2000; 54(2):144-9. PubMed ID: 10822985 [TBL] [Abstract][Full Text] [Related]
19. Real-time monitoring of changes of adsorbed and crystalline water contents in tablet formulation powder containing theophylline anhydrate at various temperatures during agitated granulation by near-infrared spectroscopy. Otsuka M; Kanai Y; Hattori Y J Pharm Sci; 2014 Sep; 103(9):2924-2936. PubMed ID: 24832393 [TBL] [Abstract][Full Text] [Related]
20. Quantitative determination of hydrate content of theophylline powder by chemometric X-ray powder diffraction analysis. Otsuka M; Kinoshita H AAPS PharmSciTech; 2010 Mar; 11(1):204-11. PubMed ID: 20127211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]