BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27324975)

  • 1. Regioselective ortho-Hydroxylations of Flavonoids by Yeast.
    Sordon S; Madej A; Popłoński J; Bartmańska A; Tronina T; Brzezowska E; Juszczyk P; Huszcza E
    J Agric Food Chem; 2016 Jul; 64(27):5525-30. PubMed ID: 27324975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope.
    Dulak K; Sordon S; Matera A; Kozak B; Huszcza E; Popłoński J
    Microb Cell Fact; 2022 Aug; 21(1):175. PubMed ID: 36038906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro biotransformation of flavonoids by rat liver microsomes.
    Nielsen SE; Breinholt V; Justesen U; Cornett C; Dragsted LO
    Xenobiotica; 1998 Apr; 28(4):389-401. PubMed ID: 9604302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselective O-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca.
    Sordon S; Popłoński J; Tronina T; Huszcza E
    Bioorg Chem; 2019 Dec; 93():102750. PubMed ID: 30755333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of Chrysin to Baicalein: Selective C6-Hydroxylation of 5,7-Dihydroxyflavone Using Whole Yeast Cells Stably Expressing Human CYP1A1 Enzyme.
    Williams IS; Chib S; Nuthakki VK; Gatchie L; Joshi P; Narkhede NA; Vishwakarma RA; Bharate SB; Saran S; Chaudhuri B
    J Agric Food Chem; 2017 Aug; 65(34):7440-7446. PubMed ID: 28782952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of 5,7-Methoxyflavones by Selected Entomopathogenic Filamentous Fungi.
    Łużny M; Tronina T; Kozłowska E; Kostrzewa-Susłow E; Janeczko T
    J Agric Food Chem; 2021 Apr; 69(13):3879-3886. PubMed ID: 33780240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial biotransformation of bioactive flavonoids.
    Cao H; Chen X; Jassbi AR; Xiao J
    Biotechnol Adv; 2015; 33(1):214-223. PubMed ID: 25447420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of biotransformation of luteolin, luteolin 7-O-glucoside, 3',4'-dihydroxyflavone and apigenin by cultured rat hepatocytes on antioxidative capacity and inhibition of EGF receptor tyrosine kinase activity.
    Schlupper D; Giesa S; Gebhardt R
    Planta Med; 2006 Jun; 72(7):596-603. PubMed ID: 16732514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages.
    Hougee S; Sanders A; Faber J; Graus YM; van den Berg WB; Garssen J; Smit HF; Hoijer MA
    Biochem Pharmacol; 2005 Jan; 69(2):241-8. PubMed ID: 15627476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds.
    Labib S; Hummel S; Richling E; Humpf HU; Schreier P
    Mol Nutr Food Res; 2006 Jan; 50(1):78-86. PubMed ID: 16317785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Melanogenesis by Yeast Extracts from Cultivations of Recombinant Pichia pastoris Catalyzing ortho-Hydroxylation of Flavonoids.
    Chang TS; Tsai YH
    Curr Pharm Biotechnol; 2015; 16(12):1085-93. PubMed ID: 26278529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demethylation of Polymethoxyflavones by Human Gut Bacterium, Blautia sp. MRG-PMF1.
    Burapan S; Kim M; Han J
    J Agric Food Chem; 2017 Mar; 65(8):1620-1629. PubMed ID: 28211698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of chrysin and apigenin by Cunninghamella elegans.
    Ibrahim AR
    Chem Pharm Bull (Tokyo); 2005 Jun; 53(6):671-3. PubMed ID: 15930780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic acylation of flavonoids: effect of the nature of the substrate, origin of lipase, and operating conditions on conversion yield and regioselectivity.
    Chebil L; Anthoni J; Humeau C; Gerardin C; Engasser JM; Ghoul M
    J Agric Food Chem; 2007 Nov; 55(23):9496-502. PubMed ID: 17937478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes.
    Huang CS; Lii CK; Lin AH; Yeh YW; Yao HT; Li CC; Wang TS; Chen HW
    Arch Toxicol; 2013 Jan; 87(1):167-78. PubMed ID: 22864849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones.
    Ibrahim AR; Abul-Hajj YJ
    J Nat Prod; 1990; 53(6):1471-8. PubMed ID: 2089118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial metabolism part 9. Structure and antioxidant significance of the metabolites of 5,7-dihydroxyflavone (chrysin), and 5- and 6-hydroxyflavones.
    Herath W; Mikell JR; Hale AL; Ferreira D; Khan IA
    Chem Pharm Bull (Tokyo); 2008 Apr; 56(4):418-22. PubMed ID: 18379084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro effects of selected flavonoids on the 5'-nucleotidase activity.
    Kavutcu M; Melzig MF
    Pharmazie; 1999 Jun; 54(6):457-9. PubMed ID: 10399192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships.
    Chen CC; Chow MP; Huang WC; Lin YC; Chang YJ
    Mol Pharmacol; 2004 Sep; 66(3):683-93. PubMed ID: 15322261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids.
    Labib S; Erb A; Kraus M; Wickert T; Richling E
    Mol Nutr Food Res; 2004 Sep; 48(4):326-32. PubMed ID: 15497184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.