These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 27325096)
1. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Seo DH; Lee J; Urban A; Malik R; Kang S; Ceder G Nat Chem; 2016 Jul; 8(7):692-7. PubMed ID: 27325096 [TBL] [Abstract][Full Text] [Related]
2. Cation-Disordered Lithium-Excess Li-Fe-Ti Oxide Cathode Materials for Enhanced Li-Ion Storage. Yang M; Jin J; Shen Y; Sun S; Zhao X; Shen X ACS Appl Mater Interfaces; 2019 Nov; 11(47):44144-44152. PubMed ID: 31687798 [TBL] [Abstract][Full Text] [Related]
3. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes. Okubo M; Yamada A ACS Appl Mater Interfaces; 2017 Oct; 9(42):36463-36472. PubMed ID: 29016101 [TBL] [Abstract][Full Text] [Related]
4. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
5. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Lee J; Papp JK; Clément RJ; Sallis S; Kwon DH; Shi T; Yang W; McCloskey BD; Ceder G Nat Commun; 2017 Oct; 8(1):981. PubMed ID: 29042560 [TBL] [Abstract][Full Text] [Related]
6. Promoting the Reversible Oxygen Redox Reaction of Li-Excess Layered Cathode Materials with Surface Vanadium Cation Doping. Lee Y; Shin J; Kang H; Lee D; Kim TH; Kwon YK; Cho E Adv Sci (Weinh); 2021 Mar; 8(6):2003013. PubMed ID: 33747726 [TBL] [Abstract][Full Text] [Related]
7. Reversible Mn Lee J; Kitchaev DA; Kwon DH; Lee CW; Papp JK; Liu YS; Lun Z; Clément RJ; Shi T; McCloskey BD; Guo J; Balasubramanian M; Ceder G Nature; 2018 Apr; 556(7700):185-190. PubMed ID: 29643482 [TBL] [Abstract][Full Text] [Related]
8. Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides. Hwang J; Myeong S; Jin W; Jang H; Nam G; Yoon M; Kim SH; Joo SH; Kwak SK; Kim MG; Cho J Adv Mater; 2020 Aug; 32(34):e2001944. PubMed ID: 32656860 [TBL] [Abstract][Full Text] [Related]
9. Direct Visualization of the Reversible O Li X; Qiao Y; Guo S; Xu Z; Zhu H; Zhang X; Yuan Y; He P; Ishida M; Zhou H Adv Mater; 2018 Apr; 30(14):e1705197. PubMed ID: 29457283 [TBL] [Abstract][Full Text] [Related]
10. Importance of Chemical Distortion on the Hysteretic Oxygen Capacity in Li-Excess Layered Oxides. Kim H; Yoon S; Koo S; Lee J; Kim J; Cho M; Kim D ACS Appl Mater Interfaces; 2022 Feb; 14(7):9057-9065. PubMed ID: 35156804 [TBL] [Abstract][Full Text] [Related]
11. Structural Design Principle of Rocksalt Oxides for Li-Excess Cathode Materials. Cui Q; Li Y; Li Y; Qiu W; Liu J ACS Nano; 2024 Jan; 18(3):2302-2311. PubMed ID: 38207327 [TBL] [Abstract][Full Text] [Related]
12. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. Fu C; Li G; Luo D; Li Q; Fan J; Li L ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668 [TBL] [Abstract][Full Text] [Related]
13. Tuning Oxygen Redox Chemistry in Li-Rich Mn-Based Layered Oxide Cathodes by Modulating Cation Arrangement. Zhang J; Cheng F; Chou S; Wang J; Gu L; Wang H; Yoshikawa H; Lu Y; Chen J Adv Mater; 2019 Oct; 31(42):e1901808. PubMed ID: 31475397 [TBL] [Abstract][Full Text] [Related]
14. Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. Chen J; Deng W; Gao X; Yin S; Yang L; Liu H; Zou G; Hou H; Ji X ACS Nano; 2021 Apr; 15(4):6061-6104. PubMed ID: 33792291 [TBL] [Abstract][Full Text] [Related]
15. Fully Exploited Oxygen Redox Reaction by the Inter-Diffused Cations in Co-Free Li-Rich Materials for High Performance Li-Ion Batteries. Lee J; Dupre N; Jeong M; Kang S; Avdeev M; Gong Y; Gu L; Yoon WS; Kang B Adv Sci (Weinh); 2020 Sep; 7(17):2001658. PubMed ID: 32995137 [TBL] [Abstract][Full Text] [Related]
16. Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis. Huang J; Ouyang B; Zhang Y; Yin L; Kwon DH; Cai Z; Lun Z; Zeng G; Balasubramanian M; Ceder G Nat Mater; 2023 Mar; 22(3):353-361. PubMed ID: 36702887 [TBL] [Abstract][Full Text] [Related]
17. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Qiu B; Zhang M; Wu L; Wang J; Xia Y; Qian D; Liu H; Hy S; Chen Y; An K; Zhu Y; Liu Z; Meng YS Nat Commun; 2016 Jul; 7():12108. PubMed ID: 27363944 [TBL] [Abstract][Full Text] [Related]
18. Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides. Zhao E; Li Q; Meng F; Liu J; Wang J; He L; Jiang Z; Zhang Q; Yu X; Gu L; Yang W; Li H; Wang F; Huang X Angew Chem Int Ed Engl; 2019 Mar; 58(13):4323-4327. PubMed ID: 30710397 [TBL] [Abstract][Full Text] [Related]
19. Role of Redox-Inactive Transition-Metals in the Behavior of Cation-Disordered Rocksalt Cathodes. Chen D; Wu J; Papp JK; McCloskey BD; Yang W; Chen G Small; 2020 Jun; 16(22):e2000656. PubMed ID: 32363748 [TBL] [Abstract][Full Text] [Related]
20. Stabilizing Anionic Redox Chemistry in a Mn-Based Layered Oxide Cathode Constructed by Li-Deficient Pristine State. Cao X; Li H; Qiao Y; Jia M; Li X; Cabana J; Zhou H Adv Mater; 2021 Jan; 33(2):e2004280. PubMed ID: 33270286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]