BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27325098)

  • 1. In situ mapping of the energy flow through the entire photosynthetic apparatus.
    Dostál J; Pšenčík J; Zigmantas D
    Nat Chem; 2016 Jul; 8(7):705-10. PubMed ID: 27325098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.
    Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A
    J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum.
    Ranjbar Choubeh R; Koehorst RBM; Bína D; Struik PC; Pšenčík J; van Amerongen H
    Biochim Biophys Acta Bioenerg; 2019 Feb; 1860(2):147-154. PubMed ID: 30537470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy.
    Schlau-Cohen GS; Calhoun TR; Ginsberg NS; Read EL; Ballottari M; Bassi R; van Grondelle R; Fleming GR
    J Phys Chem B; 2009 Nov; 113(46):15352-63. PubMed ID: 19856954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport.
    León-Montiel Rde J; Kassal I; Torres JP
    J Phys Chem B; 2014 Sep; 118(36):10588-94. PubMed ID: 25141219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria.
    Fujita T; Huh J; Saikin SK; Brookes JC; Aspuru-Guzik A
    Photosynth Res; 2014 Jun; 120(3):273-89. PubMed ID: 24504540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex.
    Yeh SH; Kais S
    J Chem Phys; 2014 Dec; 141(23):234105. PubMed ID: 25527917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica.
    Dachev M; Bína D; Sobotka R; Moravcová L; Gardian Z; Kaftan D; Šlouf V; Fuciman M; Polívka T; Koblížek M
    PLoS Biol; 2017 Dec; 15(12):e2003943. PubMed ID: 29253871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From coherent to vibronic light harvesting in photosynthesis.
    Jumper CC; Rafiq S; Wang S; Scholes GD
    Curr Opin Chem Biol; 2018 Dec; 47():39-46. PubMed ID: 30077962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional electronic spectroscopy of molecular aggregates.
    Ginsberg NS; Cheng YC; Fleming GR
    Acc Chem Res; 2009 Sep; 42(9):1352-63. PubMed ID: 19691358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.
    Mirkovic T; Ostroumov EE; Anna JM; van Grondelle R; Govindjee ; Scholes GD
    Chem Rev; 2017 Jan; 117(2):249-293. PubMed ID: 27428615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence of quantum transport in photosynthetic light-harvesting complexes.
    Panitchayangkoon G; Voronine DV; Abramavicius D; Caram JR; Lewis NH; Mukamel S; Engel GS
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20908-12. PubMed ID: 22167798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoids and Photosynthesis.
    Hashimoto H; Uragami C; Cogdell RJ
    Subcell Biochem; 2016; 79():111-39. PubMed ID: 27485220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment-Protein Complexes.
    Allodi MA; Otto JP; Sohail SH; Saer RG; Wood RE; Rolczynski BS; Massey SC; Ting PC; Blankenship RE; Engel GS
    J Phys Chem Lett; 2018 Jan; 9(1):89-95. PubMed ID: 29236502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus.
    Harel E
    J Chem Phys; 2012 May; 136(17):174104. PubMed ID: 22583207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigment organization and energy level structure in light-harvesting complex 4: insights from two-dimensional electronic spectroscopy.
    Read EL; Schlau-Cohen GS; Engel GS; Georgiou T; Papiz MZ; Fleming GR
    J Phys Chem B; 2009 May; 113(18):6495-504. PubMed ID: 19402730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting.
    Wong CY; Alvey RM; Turner DB; Wilk KE; Bryant DA; Curmi PM; Silbey RJ; Scholes GD
    Nat Chem; 2012 Mar; 4(5):396-404. PubMed ID: 22522260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting.
    Baghbanzadeh S; Kassal I
    Phys Chem Chem Phys; 2016 Mar; 18(10):7459-67. PubMed ID: 26899714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.