These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 27325118)

  • 1. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.
    Cao JY; Xu YP; Zhao L; Li SS; Cai XZ
    Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L.
    Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L
    BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection.
    Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J
    Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus.
    Joshi RK; Megha S; Basu U; Rahman MH; Kav NN
    PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MYB43 in Oilseed Rape (
    Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973
    [No Abstract]   [Full Text] [Related]  

  • 9. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen.
    Regmi R; Newman TE; Kamphuis LG; Derbyshire MC
    BMC Plant Biol; 2021 Aug; 21(1):366. PubMed ID: 34380425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum.
    Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL
    Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated mRNA, sRNA, and degradome sequencing reveal oilseed rape complex responses to Sclerotinia sclerotiorum (Lib.) infection.
    Jian H; Ma J; Wei L; Liu P; Zhang A; Yang B; Li J; Xu X; Liu L
    Sci Rep; 2018 Jul; 8(1):10987. PubMed ID: 30030454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brassica napus polygalacturonase inhibitor proteins inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants.
    Bashi ZD; Rimmer SR; Khachatourians GG; Hegedus DD
    Can J Microbiol; 2013 Feb; 59(2):79-86. PubMed ID: 23461514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate Receptor-like (GLR) Family in
    Gulzar RMA; Ren CX; Fang X; Xu YP; Saand MA; Cai XZ
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.
    Ziaei M; Motallebi M; Zamani MR; Panjeh NZ
    Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot.
    Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN
    N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.
    Zhang Y; Huai D; Yang Q; Cheng Y; Ma M; Kliebenstein DJ; Zhou Y
    PLoS One; 2015; 10(10):e0140491. PubMed ID: 26465156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus.
    Zhao J; Wang J; An L; Doerge RW; Chen ZJ; Grau CR; Meng J; Osborn TC
    Planta; 2007 Dec; 227(1):13-24. PubMed ID: 17665211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping.
    Liu R; Zhao J; Xiao Y; Meng J
    Sci China C Life Sci; 2005 Oct; 48(5):460-70. PubMed ID: 16315597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum.
    Rietz S; Bernsdorff FE; Cai D
    J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus.
    Cao Y; Yan X; Ran S; Ralph J; Smith RA; Chen X; Qu C; Li J; Liu L
    Plant Cell Environ; 2022 Jan; 45(1):248-261. PubMed ID: 34697825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.