These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27325137)

  • 21. Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Shin HD; Li J; Liu L
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):8937-45. PubMed ID: 24816623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two strategies to engineer flexible loops for improved enzyme thermostability.
    Yu H; Yan Y; Zhang C; Dalby PA
    Sci Rep; 2017 Feb; 7():41212. PubMed ID: 28145457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Penicillium purpurogenum produces a highly stable endo-β-(1,4)-galactanase.
    Zavaleta V; Eyzaguirre J
    Appl Biochem Biotechnol; 2016 Dec; 180(7):1313-1327. PubMed ID: 27339187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Strategy for Thermostability Improvement of Trypsin Based on N-Glycosylation within the Ω-Loop Region.
    Guo C; Liu Y; Yu H; Du K; Gan Y; Huang H
    J Microbiol Biotechnol; 2016 Jul; 26(7):1163-72. PubMed ID: 27012235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed evolution of beta-galactosidase from Escherichia coli into beta-glucuronidase.
    Xiong AS; Peng RH; Zhuang J; Liu JG; Xu F; Cai B; Guo ZK; Qiao YS; Chen JM; Zhang Z; Yao QH
    J Biochem Mol Biol; 2007 May; 40(3):419-25. PubMed ID: 17562294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and heterologous expression of a thermostable pectate lyase from Penicillium occitanis in Escherichia coli.
    Damak N; Abdeljalil S; Koubaa A; Trigui S; Ayadi M; Trigui-Lahiani H; Kallel E; Turki N; Djemal L; Belghith H; Taieb NH; Gargouri A
    Int J Biol Macromol; 2013 Nov; 62():549-56. PubMed ID: 24141072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The β-Sheet Core is the Favored Candidate of Engineering SDR for Enhancing Thermostability but not for Activity.
    Lou D; Tan J; Zhu L; Ji S; Wang B
    Protein Pept Lett; 2017; 24(6):511-516. PubMed ID: 28128053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concurrent mutations in six amino acids in beta-glucuronidase improve its thermostability.
    Xiong AS; Peng RH; Cheng ZM; Li Y; Liu JG; Zhuang J; Gao F; Xu F; Qiao YS; Zhang Z; Chen JM; Yao QH
    Protein Eng Des Sel; 2007 Jul; 20(7):319-25. PubMed ID: 17557766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational design of xylose dehydrogenase for improved thermostability and its application in development of efficient enzymatic biofuel cell.
    Feng R; Liang B; Hou C; Han D; Han L; Lang Q; Liu A; Han L
    Enzyme Microb Technol; 2016 Mar; 84():78-85. PubMed ID: 26827777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase.
    Kim MS; Weaver JD; Lei XG
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):751-8. PubMed ID: 18443782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An antibody loop replacement design feasibility study and a loop-swapped dimer structure.
    Clark LA; Boriack-Sjodin PA; Day E; Eldredge J; Fitch C; Jarpe M; Miller S; Li Y; Simon K; van Vlijmen HW
    Protein Eng Des Sel; 2009 Feb; 22(2):93-101. PubMed ID: 19074157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site.
    Ghollasi M; Ghanbari-Safari M; Khajeh K
    Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica.
    Wen S; Tan T; Zhao H
    J Biotechnol; 2012 Dec; 164(2):248-53. PubMed ID: 22982168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR.
    Kim MS; Lei XG
    Appl Microbiol Biotechnol; 2008 May; 79(1):69-75. PubMed ID: 18340444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation.
    Guo J; Rao Z; Yang T; Man Z; Xu M; Zhang X; Yang ST
    Enzyme Microb Technol; 2015 Sep; 77():54-60. PubMed ID: 26138400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates.
    Matsumura I; Ellington AD
    J Mol Biol; 2001 Jan; 305(2):331-9. PubMed ID: 11124909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directed evolution of a beta-galactosidase from Pyrococcus woesei resulting in increased thermostable beta-glucuronidase activity.
    Xiong AS; Peng RH; Zhuang J; Li X; Xue Y; Liu JG; Gao F; Cai B; Chen JM; Yao QH
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):569-78. PubMed ID: 17876575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.