These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 27325151)

  • 1. Near-theoretical fracture strengths in native and oxidized silicon nanowires.
    DelRio FW; White RM; Krylyuk S; Davydov AV; Friedman LH; Cook RF
    Nanotechnology; 2016 Aug; 27(31):31LT02. PubMed ID: 27325151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations.
    Khalilov U; Bogaerts A; Neyts EC
    Acc Chem Res; 2017 Apr; 50(4):796-804. PubMed ID: 28248480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional etching profiles and surface speciations (via attenuated total reflection-fourier transform infrared spectroscopy) of silicon nanowires in NH4F-buffered HF solutions: a double passivation model.
    Teo BK; Chen WW; Sun XH; Wang SD; Lee ST
    J Phys Chem B; 2005 Nov; 109(46):21716-24. PubMed ID: 16853821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultimate bending strength of Si nanowires.
    Stan G; Krylyuk S; Davydov AV; Levin I; Cook RF
    Nano Lett; 2012 May; 12(5):2599-604. PubMed ID: 22494191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.
    Kushima A; Huang JY; Li J
    ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives.
    Fang S; Wang H; Yang J; Yu B; Lu S
    Faraday Discuss; 2016 Aug; 190():433-49. PubMed ID: 27203479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires.
    Ogata K; Sutter E; Zhu X; Hofmann S
    Nanotechnology; 2011 Sep; 22(36):365305. PubMed ID: 21841219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size effects in mechanical deformation and fracture of cantilevered silicon nanowires.
    Gordon MJ; Baron T; Dhalluin F; Gentile P; Ferret P
    Nano Lett; 2009 Feb; 9(2):525-9. PubMed ID: 19159318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon nanowires prepared by electron beam evaporation in ultrahigh vacuum.
    Xu X; Li S; Wang Y; Fan T; Jiang Y; Huang L; He Q; Ao T
    Nanoscale Res Lett; 2012 May; 7(1):243. PubMed ID: 22559207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Etching behavior of silicon nanowires with HF and NH4F and surface characterization by attenuated total reflection Fourier transform infrared spectroscopy: similarities and differences between one-dimensional and two-dimensional silicon surfaces.
    Chen WW; Sun XH; Wang SD; Lee ST; Teo BK
    J Phys Chem B; 2005 Jun; 109(21):10871-9. PubMed ID: 16852323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical property measurements of nanoscale structures using an atomic force microscope.
    Sundararajan S; Bhushan B; Namazu T; Isono Y
    Ultramicroscopy; 2002 May; 91(1-4):111-8. PubMed ID: 12211458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of silicon nanowires on H-terminated Si {111} surface templates studied by transmission electron microscopy.
    Ozaki N; Ohno Y; Kikkawa J; Takeda S
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i25-9. PubMed ID: 16157636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the carrier mobility enhancement in Si/Ge core-shell nanowires under different interface confinements.
    He Y; Ouyang G
    Phys Chem Chem Phys; 2018 Feb; 20(6):3888-3894. PubMed ID: 29355864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High pressure Raman scattering of silicon nanowires.
    Khachadorian S; Papagelis K; Scheel H; Colli A; Ferrari AC; Thomsen C
    Nanotechnology; 2011 May; 22(19):195707. PubMed ID: 21430319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires.
    Kuo SW; Lin HI; Ho JH; Shih YR; Chen HF; Yen TJ; Lee OK
    Biomaterials; 2012 Jul; 33(20):5013-22. PubMed ID: 22513273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying surface roughness effects on phonon transport in silicon nanowires.
    Lim J; Hippalgaonkar K; Andrews SC; Majumdar A; Yang P
    Nano Lett; 2012 May; 12(5):2475-82. PubMed ID: 22524211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilized and Improved Photoelectrochemical Responses of Silicon Nanowires Modified with Ag@SiO
    Gao X; Wu S; Yan J; Zhai X; Li X
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30072-30078. PubMed ID: 27766832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct characterization of native chemical ligation of peptides on silicon nanowires.
    Dendane N; Melnyk O; Xu T; Grandidier B; Boukherroub R; Stiévenard D; Coffinier Y
    Langmuir; 2012 Sep; 28(37):13336-44. PubMed ID: 22931112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the porosity and reflection loss of silicon nanowires by a sticky tape.
    Liu J; Huang Z
    Nanotechnology; 2015 May; 26(18):185601. PubMed ID: 25873246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon nanowires as a rechargeable template for hydride transfer in redox biocatalysis.
    Lee HY; Kim JH; Son EJ; Park CB
    Nanoscale; 2012 Dec; 4(24):7636-40. PubMed ID: 23128966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.