BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27325163)

  • 1. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis.
    Eagle S; Potter HG; Koff MF
    J Orthop Res; 2017 Mar; 35(3):412-423. PubMed ID: 27325163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiographic-based measurement of tibiofemoral joint space width and magnetic resonance imaging derived articular cartilage thickness are not related in subjects at risk for post traumatic arthritis of the knee.
    Lonza GC; Gardner-Morse MG; Vacek PM; Beynnon BD
    J Orthop Res; 2019 May; 37(5):1052-1058. PubMed ID: 30908712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness.
    Williams A; Winalski CS; Chu CR
    J Orthop Res; 2017 Mar; 35(3):699-706. PubMed ID: 27381512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the articular cartilage T
    Pedoia V; Su F; Amano K; Li Q; McCulloch CE; Souza RB; Link TM; Ma BC; Li X
    J Orthop Res; 2017 Mar; 35(3):707-717. PubMed ID: 27557479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Resonance Imaging of Articular Cartilage within the Knee.
    Argentieri EC; Burge AJ; Potter HG
    J Knee Surg; 2018 Feb; 31(2):155-165. PubMed ID: 29346825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times: data from the osteoarthritis initiative.
    Hofmann FC; Neumann J; Heilmeier U; Joseph GB; Nevitt MC; McCulloch CE; Link TM
    Skeletal Radiol; 2018 Jan; 47(1):93-106. PubMed ID: 28852821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T1ρ, T2 mapping, and EPIC-µCT Imaging in a Canine Model of Knee Osteochondral Injury.
    Franklin SP; Stoker AM; Lin ASP; Pownder SL; Burke EE; Bozynski CC; Kuroki K; Guldberg RE; Cook JL; Holmes SP
    J Orthop Res; 2020 Feb; 38(2):368-377. PubMed ID: 31429976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging following acute knee trauma.
    Kijowski R; Roemer F; Englund M; Tiderius CJ; Swärd P; Frobell RB
    Osteoarthritis Cartilage; 2014 Oct; 22(10):1429-43. PubMed ID: 25278054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automatic analysis of the knee articular cartilage T1ρ relaxation time using voxel-based relaxometry.
    Pedoia V; Li X; Su F; Calixto N; Majumdar S
    J Magn Reson Imaging; 2016 Apr; 43(4):970-80. PubMed ID: 26443990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up.
    Potter HG; Jain SK; Ma Y; Black BR; Fung S; Lyman S
    Am J Sports Med; 2012 Feb; 40(2):276-85. PubMed ID: 21952715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Quantitative Knee Articular Cartilage MR Imaging.
    Banjar M; Horiuchi S; Gedeon DN; Yoshioka H
    Magn Reson Med Sci; 2022 Mar; 21(1):29-40. PubMed ID: 34471014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal in vivo assessment of fresh osteochondral allograft transplants to the distal aspect of the femur by dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) and zonal T2 mapping MRI.
    Brown DS; Durkan MG; Foss EW; Szumowski J; Crawford DC
    J Bone Joint Surg Am; 2014 Apr; 96(7):564-72. PubMed ID: 24695923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal analysis of tibiofemoral cartilage contact area and position in ACL reconstructed patients.
    Chen E; Amano K; Pedoia V; Souza RB; Ma CB; Li X
    J Orthop Res; 2018 Oct; 36(10):2718-2727. PubMed ID: 29667733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Baseline cartilage quality is associated with voxel-based T
    Russell C; Pedoia V; Amano K; Potter H; Majumdar S;
    J Orthop Res; 2017 Mar; 35(3):688-698. PubMed ID: 27138363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress on magnetic resonance imaging for evaluating the articular cartilage of the knee joint].
    Yang GY; Guo HL; Li T; Zhao YF
    Zhongguo Gu Shang; 2016 Nov; 29(11):1061-1067. PubMed ID: 29292647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of quantitative imaging of cartilage for osteoarthritis: T2, T1rho, dGEMRIC and contrast-enhanced computed tomography.
    Taylor C; Carballido-Gamio J; Majumdar S; Li X
    Magn Reson Imaging; 2009 Jul; 27(6):779-84. PubMed ID: 19269769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating carthage-specific T1rho MRI into knee clinic diagnostic imaging.
    Pedersen DR; Klocke NF; Thedens DR; Martin JA; Williams GN; Amendola A
    Iowa Orthop J; 2011; 31():99-109. PubMed ID: 22096428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo T1rho quantitative assessment of knee cartilage after anterior cruciate ligament injury using 3 Tesla magnetic resonance imaging.
    Bolbos RI; Ma CB; Link TM; Majumdar S; Li X
    Invest Radiol; 2008 Nov; 43(11):782-8. PubMed ID: 18923257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical magnetic resonance imaging of knee articular cartilage: T1rho and T2 mapping as cartilage degeneration biomarkers.
    Le J; Peng Q; Sperling K
    Ann N Y Acad Sci; 2016 Nov; 1383(1):34-42. PubMed ID: 27472534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.