BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27325502)

  • 1. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments.
    Eng L; Nygren-Babol L; Hanning A
    Anal Biochem; 2016 Oct; 510():79-87. PubMed ID: 27325502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.
    Rogez-Florent T; Duhamel L; Goossens L; Six P; Drucbert AS; Depreux P; Danzé PM; Landy D; Goossens JF; Foulon C
    J Mol Recognit; 2014 Jan; 27(1):46-56. PubMed ID: 24375583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low noise detection of biomolecular interactions with signal-locking surface plasmon resonance.
    Williams LD; Ghosh T; Mastrangelo CH
    Anal Chem; 2010 Jul; 82(14):6025-31. PubMed ID: 20568712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-enhanced surface plasmon resonance: a new concept for improved performance in optical biosensor analysis.
    Granqvist N; Hanning A; Eng L; Tuppurainen J; Viitala T
    Sensors (Basel); 2013 Nov; 13(11):15348-63. PubMed ID: 24217357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral separation of new sulfonamide derivatives and evaluation of their enantioselective affinity for human carbonic anhydrase II by microscale thermophoresis and surface plasmon resonance.
    Rogez-Florent T; Foulon C; Drucbert AS; Schifano N; Six P; Devassine S; Depreux P; Danzé PM; Goossens L; Danel C; Goossens JF
    J Pharm Biomed Anal; 2017 Apr; 137():113-122. PubMed ID: 28110167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis and fragment screening with Fujifilm AP-3000.
    Rich RL; Myszka DG
    Anal Biochem; 2010 Jul; 402(2):170-8. PubMed ID: 20371220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent affixation of histidine-tagged proteins tethered onto Ni-nitrilotriacetic acid sensors for enhanced surface plasmon resonance detection of small molecule drugs and kinetic studies of antibody/antigen interactions.
    Wang X; Liu Q; Tan X; Liu L; Zhou F
    Analyst; 2019 Jan; 144(2):587-593. PubMed ID: 30427328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative monitoring of two simultaneously binding species using Label-Enhanced surface plasmon resonance.
    Eng L; Garcia BL; Geisbrecht BV; Hanning A
    Biochem Biophys Res Commun; 2018 Feb; 497(1):133-138. PubMed ID: 29427666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance sensing: from purified biomolecules to intact cells.
    Su YW; Wang W
    Anal Bioanal Chem; 2018 Jul; 410(17):3943-3951. PubMed ID: 29651526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPR-based fragment screening: advantages and applications.
    Neumann T; Junker HD; Schmidt K; Sekul R
    Curr Top Med Chem; 2007; 7(16):1630-42. PubMed ID: 17979772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free detection of protein binding with multisine SPR microchips.
    Ghosh T; Williams L; Mastrangelo CH
    Lab Chip; 2011 Dec; 11(24):4194-9. PubMed ID: 22033816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragment screening by SPR and advanced application to GPCRs.
    Shepherd CA; Hopkins AL; Navratilova I
    Prog Biophys Mol Biol; 2014; 116(2-3):113-23. PubMed ID: 25301577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-Protein Interactions: Surface Plasmon Resonance.
    Douzi B
    Methods Mol Biol; 2017; 1615():257-275. PubMed ID: 28667619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosensor-surface plasmon resonance: A strategy to help establish a new generation RNA-specific small molecules.
    Vo T; Paul A; Kumar A; Boykin DW; Wilson WD
    Methods; 2019 Sep; 167():15-27. PubMed ID: 31077819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology.
    Papalia GA; Leavitt S; Bynum MA; Katsamba PS; Wilton R; Qiu H; Steukers M; Wang S; Bindu L; Phogat S; Giannetti AM; Ryan TE; Pudlak VA; Matusiewicz K; Michelson KM; Nowakowski A; Pham-Baginski A; Brooks J; Tieman BC; Bruce BD; Vaughn M; Baksh M; Cho YH; Wit MD; Smets A; Vandersmissen J; Michiels L; Myszka DG
    Anal Biochem; 2006 Dec; 359(1):94-105. PubMed ID: 17007806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bivalent kinetic binding model to surface plasmon resonance studies of antigen-antibody displacement reactions.
    Gelinsky-Wersing D; Wersing W; Pompe W
    Anal Biochem; 2017 Feb; 518():110-125. PubMed ID: 27888099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis.
    Olaru A; Bala C; Jaffrezic-Renault N; Aboul-Enein HY
    Crit Rev Anal Chem; 2015; 45(2):97-105. PubMed ID: 25558771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of a fragment library for lead discovery using SPR biosensor technology.
    Elinder M; Geitmann M; Gossas T; Källblad P; Winquist J; Nordström H; Hämäläinen M; Danielson UH
    J Biomol Screen; 2011 Jan; 16(1):15-25. PubMed ID: 21149860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.