These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 27325505)
1. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Hertwig L; Hamann I; Romero-Suarez S; Millward JM; Pietrek R; Chanvillard C; Stuis H; Pollok K; Ransohoff RM; Cardona AE; Infante-Duarte C Eur J Immunol; 2016 Aug; 46(8):1984-96. PubMed ID: 27325505 [TBL] [Abstract][Full Text] [Related]
2. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. Huang D; Shi FD; Jung S; Pien GC; Wang J; Salazar-Mather TP; He TT; Weaver JT; Ljunggren HG; Biron CA; Littman DR; Ransohoff RM FASEB J; 2006 May; 20(7):896-905. PubMed ID: 16675847 [TBL] [Abstract][Full Text] [Related]
3. Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. Garcia JA; Pino PA; Mizutani M; Cardona SM; Charo IF; Ransohoff RM; Forsthuber TG; Cardona AE J Immunol; 2013 Aug; 191(3):1063-72. PubMed ID: 23817416 [TBL] [Abstract][Full Text] [Related]
4. Regional Distribution of CNS Antigens Differentially Determines T-Cell Mediated Neuroinflammation in a CX3CR1-Dependent Manner. Rayasam A; Kijak JA; Dallmann M; Hsu M; Zindl N; Lindstedt A; Steinmetz L; Harding JS; Harris MG; Karman J; Sandor M; Fabry Z J Neurosci; 2018 Aug; 38(32):7058-7071. PubMed ID: 29959236 [TBL] [Abstract][Full Text] [Related]
5. Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1 Chrobok NL; Jaouen A; Fenrich KK; Bol JG; Wilhelmus MM; Drukarch B; Debarbieux F; van Dam AM Amino Acids; 2017 Mar; 49(3):643-658. PubMed ID: 27826792 [TBL] [Abstract][Full Text] [Related]
6. T cell-independent modulation of experimental autoimmune encephalomyelitis in ADAP-deficient mice. Engelmann S; Togni M; Thielitz A; Reichardt P; Kliche S; Reinhold D; Schraven B; Reinhold A J Immunol; 2013 Nov; 191(10):4950-9. PubMed ID: 24101551 [TBL] [Abstract][Full Text] [Related]
7. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. Müller M; Carter SL; Hofer MJ; Manders P; Getts DR; Getts MT; Dreykluft A; Lu B; Gerard C; King NJ; Campbell IL J Immunol; 2007 Sep; 179(5):2774-86. PubMed ID: 17709491 [TBL] [Abstract][Full Text] [Related]
8. Innate IFN-γ promotes development of experimental autoimmune encephalomyelitis: a role for NK cells and M1 macrophages. Dungan LS; McGuinness NC; Boon L; Lynch MA; Mills KH Eur J Immunol; 2014 Oct; 44(10):2903-17. PubMed ID: 25056715 [TBL] [Abstract][Full Text] [Related]
9. The Central Nervous System Contains ILC1s That Differ From NK Cells in the Response to Inflammation. Romero-Suárez S; Del Rio Serrato A; Bueno RJ; Brunotte-Strecker D; Stehle C; Figueiredo CA; Hertwig L; Dunay IR; Romagnani C; Infante-Duarte C Front Immunol; 2019; 10():2337. PubMed ID: 31649664 [TBL] [Abstract][Full Text] [Related]
10. Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance. Zheng P; Fu H; Wei G; Wei Z; Zhang J; Ma X; Rui D; Meng X; Ming L Clin Immunol; 2016 Aug; 169():36-46. PubMed ID: 27327113 [TBL] [Abstract][Full Text] [Related]
11. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain. Skundric DS; Huston K; Shaw M; Tse HY; Raine CS Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038 [TBL] [Abstract][Full Text] [Related]
12. Effects of cytokine deficiency on chemokine expression in CNS of mice with EAE. Matejuk A; Dwyer J; Ito A; Bruender Z; Vandenbark AA; Offner H J Neurosci Res; 2002 Mar; 67(5):680-8. PubMed ID: 11891780 [TBL] [Abstract][Full Text] [Related]
13. Selective CC chemokine receptor expression by central nervous system-infiltrating encephalitogenic T cells during experimental autoimmune encephalomyelitis. Fife BT; Paniagua MC; Lukacs NW; Kunkel SL; Karpus WJ J Neurosci Res; 2001 Nov; 66(4):705-14. PubMed ID: 11746391 [TBL] [Abstract][Full Text] [Related]
14. IFN-β inhibits T cells accumulation in the central nervous system by reducing the expression and activity of chemokines in experimental autoimmune encephalomyelitis. Cheng W; Zhao Q; Xi Y; Li C; Xu Y; Wang L; Niu X; Wang Z; Chen G Mol Immunol; 2015 Mar; 64(1):152-62. PubMed ID: 25433436 [TBL] [Abstract][Full Text] [Related]
15. Chemokines and chemokine receptors in autoimmune encephalomyelitis as a model for central nervous system inflammatory disease regulation. Dogan RN; Karpus WJ Front Biosci; 2004 May; 9():1500-5. PubMed ID: 14977561 [TBL] [Abstract][Full Text] [Related]
16. CX3CR1 regulates the maintenance of KLRG1+ NK cells into the bone marrow by promoting their entry into circulation. Ponzetta A; Sciumè G; Benigni G; Antonangeli F; Morrone S; Santoni A; Bernardini G J Immunol; 2013 Dec; 191(11):5684-94. PubMed ID: 24184559 [TBL] [Abstract][Full Text] [Related]
17. Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. Dos Santos AC; Roffê E; Arantes RM; Juliano L; Pesquero JL; Pesquero JB; Bader M; Teixeira MM; Carvalho-Tavares J J Neuroinflammation; 2008 Nov; 5():49. PubMed ID: 18986535 [TBL] [Abstract][Full Text] [Related]
18. CXCR3 signaling in glial cells ameliorates experimental autoimmune encephalomyelitis by restraining the generation of a pro-Th17 cytokine milieu and reducing CNS-infiltrating Th17 cells. Chung CY; Liao F J Neuroinflammation; 2016 Apr; 13(1):76. PubMed ID: 27068264 [TBL] [Abstract][Full Text] [Related]
19. Elevated interferon gamma expression in the central nervous system of tumour necrosis factor receptor 1-deficient mice with experimental autoimmune encephalomyelitis. Wheeler RD; Zehntner SP; Kelly LM; Bourbonnière L; Owens T Immunology; 2006 Aug; 118(4):527-38. PubMed ID: 16780563 [TBL] [Abstract][Full Text] [Related]