These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 27325522)
1. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets. Xie Q; Zhu Q; Li Y Nanoscale Res Lett; 2016 Dec; 11(1):306. PubMed ID: 27325522 [TBL] [Abstract][Full Text] [Related]
2. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage. Chieruzzi M; Miliozzi A; Crescenzi T; Torre L; Kenny JM Nanoscale Res Lett; 2015 Dec; 10(1):984. PubMed ID: 26123273 [TBL] [Abstract][Full Text] [Related]
3. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement. Ma B; Shin D; Banerjee D Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602 [TBL] [Abstract][Full Text] [Related]
5. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Mehrali M; Sadeghinezhad E; Latibari ST; Kazi SN; Mehrali M; Zubir MN; Metselaar HS Nanoscale Res Lett; 2014 Jan; 9(1):15. PubMed ID: 24410867 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review. Abir FM; Altwarah Q; Rana MT; Shin D Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399205 [TBL] [Abstract][Full Text] [Related]
7. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648 [TBL] [Abstract][Full Text] [Related]
8. Specific Heat Capacity of Solar Salt-Based Nanofluids: Molecular Dynamics Simulation and Experiment. Abir FM; Shin D Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276444 [TBL] [Abstract][Full Text] [Related]
9. Thermal properties analysis and thermal cycling of HITEC molten salt with h-BN nanoparticles for CSP thermal energy storage applications. Suraparaju SK; Aljaerani HA; Samykano M; Kadirgama K; Noor MM; Natarajan SK Environ Sci Pollut Res Int; 2024 Aug; 31(38):50166-50178. PubMed ID: 38625473 [TBL] [Abstract][Full Text] [Related]
10. In Situ Synthesis of Alumina Nanoparticles in a Binary Carbonate Salt Eutectic for Enhancing Heat Capacity. Nayfeh Y; Rizvi SMM; El Far B; Shin D Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33120917 [TBL] [Abstract][Full Text] [Related]
11. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. Lasfargues M; Bell A; Ding Y J Nanopart Res; 2016; 18():150. PubMed ID: 27358585 [TBL] [Abstract][Full Text] [Related]
12. Performance of Graphite-Dispersed Li Karim MA; Islam M; Arthur O; Yarlagadda PK Molecules; 2020 Jan; 25(2):. PubMed ID: 31963280 [TBL] [Abstract][Full Text] [Related]
13. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate. Tong Z; Li L; Li Y; Wang Q; Cheng X Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134 [TBL] [Abstract][Full Text] [Related]
14. Investigation on the micromorphology and thermophysical properties of NaNO Liu H; Yang J; Zheng H; Chen Y; Li Y Micron; 2021 Sep; 148():103103. PubMed ID: 34134050 [TBL] [Abstract][Full Text] [Related]
15. Novel Wide-Working-Temperature NaNO Wang H; Li J; Zhong Y; Liu X; Wang M Molecules; 2024 May; 29(10):. PubMed ID: 38792189 [TBL] [Abstract][Full Text] [Related]
16. A Review on Recent Progress in Preparation of Medium-Temperature Solar-Thermal Nanofluids with Stable Dispersion. Hu T; Zhang J; Xia J; Li X; Tao P; Deng T Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110985 [TBL] [Abstract][Full Text] [Related]
17. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles. Mondragón R; Juliá JE; Cabedo L; Navarrete N Sci Rep; 2018 May; 8(1):7532. PubMed ID: 29760478 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and thermo-physical properties of deep eutectic solvent-based graphene nanofluids. Fang YK; Osama M; Rashmi W; Shahbaz K; Khalid M; Mjalli FS; Farid MM Nanotechnology; 2016 Feb; 27(7):075702. PubMed ID: 26766874 [TBL] [Abstract][Full Text] [Related]
19. Heat Transfer and Entropy Generation Abilities of MWCNTs/GNPs Hybrid Nanofluids in Microtubes. Hussien AA; Abdullah MZ; Yusop NM; Al-Kouz W; Mahmoudi E; Mehrali M Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267194 [TBL] [Abstract][Full Text] [Related]
20. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures. D'Aguanno B; Karthik M; Grace AN; Floris A Sci Rep; 2018 Jul; 8(1):10485. PubMed ID: 29992980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]