BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 27325628)

  • 1. Parasitoid-induced changes in metabolic rate and feeding activity of the emerald ash borer (Coleoptera: Buprestidae): implications for biological control.
    Dang YQ; Duan JJ; Li AY
    Sci Rep; 2023 Dec; 13(1):22663. PubMed ID: 38114572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.
    Whitehill JG; Popova-Butler A; Green-Church KB; Koch JL; Herms DA; Bonello P
    PLoS One; 2011; 6(9):e24863. PubMed ID: 21949771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field phenology of emerald ash borer (Coleoptera: Buprestidae) parasitoids in New York State.
    Morris TD; Gould JR; Fierke MK
    Environ Entomol; 2024 May; ():. PubMed ID: 38767977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Successful establishment, spread, and impact of the introduced parasitoid Spathius galinae (Hymenoptera: Braconidae) on emerald ash borer (Coleoptera: Buprestidae) populations in postinvasion forests in Michigan.
    Duan JJ; Schmude JM; Petrice TR; Bauer LS; Poland TM; Chandler JL; Crandall R; Elkinton JS; Van Driesche R
    J Econ Entomol; 2023 Oct; 116(5):1518-1528. PubMed ID: 37493516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tree species richness and ash density have variable effects on emerald ash borer biological control by woodpeckers and parasitoid wasps in post-invasion white ash stands.
    Wilson CJ; Petrice TR; Poland TM; McCullough DG
    Environ Entomol; 2024 Jun; ():. PubMed ID: 38912619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A glimmer of hope - ash genotypes with increased resistance to ash dieback pathogen show cross-resistance to emerald ash borer.
    Gossner MM; Perret-Gentil A; Britt E; Queloz V; Glauser G; Ladd T; Roe AD; Cleary M; Liziniewicz M; Nielsen LR; Ghosh SK; Bonello P; Eisenring M
    New Phytol; 2023 Nov; 240(3):1219-1232. PubMed ID: 37345294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the heat treatment dose for Agrilus planipennis (Coleoptera: Buprestidae) prepupae using the Humble water bath.
    Noseworthy MK; Souque TJ; MacQuarrie CJK; John EP; Gray M; Roberts J; Allen EA
    J Econ Entomol; 2024 Feb; 117(1):199-208. PubMed ID: 37978041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide SNP identification in
    Hale CE; Jordan MA; Iriarte G; Broders K; Storer AJ; Nalam VJ; Marshall JM
    Ecol Evol; 2021 Nov; 11(21):14775-14788. PubMed ID: 34765140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent molecular evolution among ash species resistant to the emerald ash borer.
    Kelly LJ; Plumb WJ; Carey DW; Mason ME; Cooper ED; Crowther W; Whittemore AT; Rossiter SJ; Koch JL; Buggs RJA
    Nat Ecol Evol; 2020 Aug; 4(8):1116-1128. PubMed ID: 32451426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiochemical and Communication Ecology of the Emerald Ash Borer,
    Silk P; Mayo P; Ryall K; Roscoe L
    Insects; 2019 Sep; 10(10):. PubMed ID: 31569826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling long-distance dispersal of emerald ash borer in European Russia and prognosis of spread of this pest to neighboring countries within next 5 years.
    Orlova-Bienkowskaja MJ; Bieńkowski AO
    Ecol Evol; 2018 Sep; 8(18):9295-9304. PubMed ID: 30377501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring risk factors for insect borer attack in Georgia's (USA) urban landscapes.
    Williamson ZV; Blaauw BR; Joseph SV
    PLoS One; 2024; 19(2):e0299368. PubMed ID: 38408102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late Permian wood-borings reveal an intricate network of ecological relationships.
    Feng Z; Wang J; Rößler R; Ślipiński A; Labandeira C
    Nat Commun; 2017 Sep; 8(1):556. PubMed ID: 28916787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Time-Frequency Domain Mixed Attention-Based Approach for Classifying Wood-Boring Insect Feeding Vibration Signals Using a Deep Learning Model.
    Jiang W; Chen Z; Zhang H
    Insects; 2024 Apr; 15(4):. PubMed ID: 38667411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phoenix glimmers within the ashes: generalized defensive traits suggest hope for plants under attack by invasive pests.
    Johnson TD; Whitehill JGA
    New Phytol; 2023 Nov; 240(3):912-914. PubMed ID: 37632211
    [No Abstract]   [Full Text] [Related]  

  • 16. Editorial: Biointeractions among host plant, wood borers and pathogens/their associated microbes.
    Zhao L; Sun J; Bushley K
    Front Plant Sci; 2024; 15():1347776. PubMed ID: 38362450
    [No Abstract]   [Full Text] [Related]  

  • 17. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.
    Cipollini D; Peterson DL
    Oecologia; 2018 Jun; 187(2):507-519. PubMed ID: 29484497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The History of Attack and Success of Emerald Ash Borer (Coleoptera: Buprestidae) on White Fringetree in Southwestern Ohio.
    Thiemann D; Lopez V; Ray AM; Cipollini D
    Environ Entomol; 2016 Aug; 45(4):961-6. PubMed ID: 27325628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution, Predictors, and Impacts of Emerald Ash Borer (Agrilus planipennis) (Coleoptera: Buprestidae) Infestation of White Fringetree (Chionanthus virginicus).
    Peterson DL; Cipollini D
    Environ Entomol; 2017 Feb; 46(1):50-57. PubMed ID: 28031427
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.