These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 27325652)
1. Novel Anticancer Agents Based on Targeting the Trimer Interface of the PRL Phosphatase. Bai Y; Yu ZH; Liu S; Zhang L; Zhang RY; Zeng LF; Zhang S; Zhang ZY Cancer Res; 2016 Aug; 76(16):4805-15. PubMed ID: 27325652 [TBL] [Abstract][Full Text] [Related]
2. Discovery and Evaluation of PRL Trimer Disruptors for Novel Anticancer Agents. Bai Y; Yu ZH; Zhang ZY Methods Mol Biol; 2016; 1447():121-38. PubMed ID: 27514804 [TBL] [Abstract][Full Text] [Related]
4. Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. Sun JP; Luo Y; Yu X; Wang WQ; Zhou B; Liang F; Zhang ZY J Biol Chem; 2007 Sep; 282(39):29043-29051. PubMed ID: 17656357 [TBL] [Abstract][Full Text] [Related]
5. Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells. Min G; Lee SK; Kim HN; Han YM; Lee RH; Jeong DG; Han DC; Kwon BM Bioorg Med Chem Lett; 2013 Jul; 23(13):3769-74. PubMed ID: 23726031 [TBL] [Abstract][Full Text] [Related]
6. Targeting PRL phosphatases in hematological malignancies. Xiao S; Chen H; Bai Y; Zhang ZY; Liu Y Expert Opin Ther Targets; 2024 Apr; 28(4):259-271. PubMed ID: 38653737 [TBL] [Abstract][Full Text] [Related]
7. Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Guo K; Tang JP; Tan CP; Wang H; Zeng Q Cancer Biol Ther; 2008 May; 7(5):750-7. PubMed ID: 18364570 [TBL] [Abstract][Full Text] [Related]
8. The dual inhibition against the activity and expression of tyrosine phosphatase PRL-3 from a rhodanine derivative. Lin L; Lu L; Yuan C; Wang A; Zhu M; Fu X; Xing S Bioorg Med Chem Lett; 2021 Jun; 41():127981. PubMed ID: 33766767 [TBL] [Abstract][Full Text] [Related]
9. Discovery of novel PRL-3 inhibitors based on the structure-based virtual screening. Park H; Jung SK; Jeong DG; Ryu SE; Kim SJ Bioorg Med Chem Lett; 2008 Apr; 18(7):2250-5. PubMed ID: 18358718 [TBL] [Abstract][Full Text] [Related]
10. Exploring the cause of the inhibitor 4AX attaching to binding site disrupting protein tyrosine phosphatase 4A1 trimerization by molecular dynamic simulation. Wei-Ya L; Yu-Qing D; Yang-Chun M; Xin-Hua L; Ying M; Wang RL J Biomol Struct Dyn; 2019 Nov; 37(18):4840-4851. PubMed ID: 30661451 [TBL] [Abstract][Full Text] [Related]
11. An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Wang L; Shen Y; Song R; Sun Y; Xu J; Xu Q Mol Pharmacol; 2009 Dec; 76(6):1238-45. PubMed ID: 19779032 [TBL] [Abstract][Full Text] [Related]
12. Targeting phosphatases of regenerating liver (PRLs) in cancer. Wei M; Korotkov KV; Blackburn JS Pharmacol Ther; 2018 Oct; 190():128-138. PubMed ID: 29859177 [TBL] [Abstract][Full Text] [Related]
13. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Sun JP; Wang WQ; Yang H; Liu S; Liang F; Fedorov AA; Almo SC; Zhang ZY Biochemistry; 2005 Sep; 44(36):12009-21. PubMed ID: 16142898 [TBL] [Abstract][Full Text] [Related]
14. Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Wu X; Zeng H; Zhang X; Zhao Y; Sha H; Ge X; Zhang M; Gao X; Xu Q Am J Pathol; 2004 Jun; 164(6):2039-54. PubMed ID: 15161639 [TBL] [Abstract][Full Text] [Related]
15. Phosphatase of regenerating liver: a novel target for cancer therapy. Campbell AM; Zhang ZY Expert Opin Ther Targets; 2014 May; 18(5):555-69. PubMed ID: 24579927 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA-26a inhibits cell proliferation and invasion of cervical cancer cells by targeting protein tyrosine phosphatase type IVA 1. Dong J; Sui L; Wang Q; Chen M; Sun H Mol Med Rep; 2014 Sep; 10(3):1426-32. PubMed ID: 24939702 [TBL] [Abstract][Full Text] [Related]
17. Phosphatase of regenerating liver-3 as a convergent therapeutic target for lymph node metastasis in esophageal squamous cell carcinoma. Ooki A; Yamashita K; Kikuchi S; Sakuramoto S; Katada N; Watanabe M Int J Cancer; 2010 Aug; 127(3):543-54. PubMed ID: 19960436 [TBL] [Abstract][Full Text] [Related]
18. PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways. Mu N; Gu J; Liu N; Xue X; Shu Z; Zhang K; Huang T; Chu C; Zhang W; Gong L; Zhao H; Jia B; Gao D; Shang L; Zhang W; Guo Q Theranostics; 2018; 8(6):1527-1539. PubMed ID: 29556339 [No Abstract] [Full Text] [Related]
19. PCBP1 suppresses the translation of metastasis-associated PRL-3 phosphatase. Wang H; Vardy LA; Tan CP; Loo JM; Guo K; Li J; Lim SG; Zhou J; Chng WJ; Ng SB; Li HX; Zeng Q Cancer Cell; 2010 Jul; 18(1):52-62. PubMed ID: 20609352 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth. Kostantin E; Hardy S; Valinsky WC; Kompatscher A; de Baaij JH; Zolotarov Y; Landry M; Uetani N; Martínez-Cruz LA; Hoenderop JG; Shrier A; Tremblay ML J Biol Chem; 2016 May; 291(20):10716-25. PubMed ID: 26969161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]