These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 27325678)

  • 21. Evidence that a metabolic microcompartment contains and recycles private cofactor pools.
    Huseby DL; Roth JR
    J Bacteriol; 2013 Jun; 195(12):2864-79. PubMed ID: 23585538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1.
    Sarwar Z; Lundgren BR; Grassa MT; Wang MX; Gribble M; Moffat JF; Nomura CT
    mSphere; 2016; 1(2):. PubMed ID: 27303730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acinetobacter baumannii Catabolizes Ethanolamine in the Absence of a Metabolosome and Converts Cobinamide into Adenosylated Cobamides.
    Villa EA; Escalante-Semerena JC
    mBio; 2022 Aug; 13(4):e0179322. PubMed ID: 35880884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium.
    Sheppard DE; Roth JR
    J Bacteriol; 1994 Mar; 176(5):1287-96. PubMed ID: 8113167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated activities of two alternative sigma factors coordinate iron acquisition and uptake by Pseudomonas aeruginosa.
    Edgar RJ; Hampton GE; Garcia GPC; Maher MJ; Perugini MA; Ackerley DF; Lamont IL
    Mol Microbiol; 2017 Dec; 106(6):891-904. PubMed ID: 28971540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1.
    Madhuri Indurthi S; Chou HT; Lu CD
    Microbiology (Reading); 2016 May; 162(5):876-888. PubMed ID: 26967762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2,3-Butanediol catabolism in Pseudomonas aeruginosa PAO1.
    Liu Q; Liu Y; Kang Z; Xiao D; Gao C; Xu P; Ma C
    Environ Microbiol; 2018 Nov; 20(11):3927-3940. PubMed ID: 30058099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The arginine regulatory protein mediates repression by arginine of the operons encoding glutamate synthase and anabolic glutamate dehydrogenase in Pseudomonas aeruginosa.
    Hashim S; Kwon DH; Abdelal A; Lu CD
    J Bacteriol; 2004 Jun; 186(12):3848-54. PubMed ID: 15175298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudomonas aeruginosa MifS-MifR Two-Component System Is Specific for α-Ketoglutarate Utilization.
    Tatke G; Kumari H; Silva-Herzog E; Ramirez L; Mathee K
    PLoS One; 2015; 10(6):e0129629. PubMed ID: 26114434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa.
    Imperi F; Tiburzi F; Fimia GM; Visca P
    Environ Microbiol; 2010 Jun; 12(6):1630-42. PubMed ID: 20370820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium.
    Roof DM; Roth JR
    J Bacteriol; 1992 Oct; 174(20):6634-43. PubMed ID: 1328159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1.
    Ambrosi C; Tiburzi F; Imperi F; Putignani L; Visca P
    J Bacteriol; 2005 Aug; 187(15):5097-107. PubMed ID: 16030202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sigma factors in Pseudomonas aeruginosa.
    Potvin E; Sanschagrin F; Levesque RC
    FEMS Microbiol Rev; 2008 Jan; 32(1):38-55. PubMed ID: 18070067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation.
    Crabbé A; Pycke B; Van Houdt R; Monsieurs P; Nickerson C; Leys N; Cornelis P
    Environ Microbiol; 2010 Jun; 12(6):1545-64. PubMed ID: 20236169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads.
    Hoffmann N; Rehm BH
    Biotechnol Lett; 2005 Feb; 27(4):279-82. PubMed ID: 15742151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
    He W; Li C; Lu CD
    J Bacteriol; 2011 May; 193(9):2107-15. PubMed ID: 21378189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basal Body Structures Differentially Affect Transcription of RpoN- and FliA-Dependent Flagellar Genes in Helicobacter pylori.
    Tsang J; Hoover TR
    J Bacteriol; 2015 Jun; 197(11):1921-30. PubMed ID: 25825427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfate Ester Detergent Degradation in
    Panasia G; Oetermann S; Steinbüchel A; Philipp B
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa.
    Hoffmann N; Rehm BH
    FEMS Microbiol Lett; 2004 Aug; 237(1):1-7. PubMed ID: 15268931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi.
    Yang XF; Lybecker MC; Pal U; Alani SM; Blevins J; Revel AT; Samuels DS; Norgard MV
    J Bacteriol; 2005 Jul; 187(14):4822-9. PubMed ID: 15995197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.