These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

684 related articles for article (PubMed ID: 27326665)

  • 1. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models.
    Kickingereder P; Burth S; Wick A; Götz M; Eidel O; Schlemmer HP; Maier-Hein KH; Wick W; Bendszus M; Radbruch A; Bonekamp D
    Radiology; 2016 Sep; 280(3):880-9. PubMed ID: 27326665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma.
    Kickingereder P; Neuberger U; Bonekamp D; Piechotta PL; Götz M; Wick A; Sill M; Kratz A; Shinohara RT; Jones DTW; Radbruch A; Muschelli J; Unterberg A; Debus J; Schlemmer HP; Herold-Mende C; Pfister S; von Deimling A; Wick W; Capper D; Maier-Hein KH; Bendszus M
    Neuro Oncol; 2018 May; 20(6):848-857. PubMed ID: 29036412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
    Chaddad A; Sabri S; Niazi T; Abdulkarim B
    Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction.
    Bae S; Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Radiology; 2018 Dec; 289(3):797-806. PubMed ID: 30277442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features.
    Kickingereder P; Bonekamp D; Nowosielski M; Kratz A; Sill M; Burth S; Wick A; Eidel O; Schlemmer HP; Radbruch A; Debus J; Herold-Mende C; Unterberg A; Jones D; Pfister S; Wick W; von Deimling A; Bendszus M; Capper D
    Radiology; 2016 Dec; 281(3):907-918. PubMed ID: 27636026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma.
    Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B
    Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical parameters outweigh diffusion- and perfusion-derived MRI parameters in predicting survival in newly diagnosed glioblastoma.
    Burth S; Kickingereder P; Eidel O; Tichy D; Bonekamp D; Weberling L; Wick A; Löw S; Hertenstein A; Nowosielski M; Schlemmer HP; Wick W; Bendszus M; Radbruch A
    Neuro Oncol; 2016 Dec; 18(12):1673-1679. PubMed ID: 27298312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response.
    Kickingereder P; Götz M; Muschelli J; Wick A; Neuberger U; Shinohara RT; Sill M; Nowosielski M; Schlemmer HP; Radbruch A; Wick W; Bendszus M; Maier-Hein KH; Bonekamp D
    Clin Cancer Res; 2016 Dec; 22(23):5765-5771. PubMed ID: 27803067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incremental Prognostic Value of ADC Histogram Analysis over MGMT Promoter Methylation Status in Patients with Glioblastoma.
    Choi YS; Ahn SS; Kim DW; Chang JH; Kang SG; Kim EH; Kim SH; Rim TH; Lee SK
    Radiology; 2016 Oct; 281(1):175-84. PubMed ID: 27120357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apparent Diffusion Coefficient as a Predictive Biomarker for Survival in Patients with Treatment-Naive Glioblastoma Using Quantitative Multiparametric Magnetic Resonance Profiling.
    Kim BS; Kim ST; Kim JH; Seol HJ; Nam DH; Shin HJ; Lee JI; Kong DS
    World Neurosurg; 2019 Feb; 122():e812-e820. PubMed ID: 30391622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MR Perfusion-derived Hemodynamic Parametric Response Mapping of Bevacizumab Efficacy in Recurrent Glioblastoma.
    Kickingereder P; Radbruch A; Burth S; Wick A; Heiland S; Schlemmer HP; Wick W; Bendszus M; Bonekamp D
    Radiology; 2016 May; 279(2):542-52. PubMed ID: 26579564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiparametric MR Imaging of Diffusion and Perfusion in Contrast-enhancing and Nonenhancing Components in Patients with Glioblastoma.
    Boonzaier NR; Larkin TJ; Matys T; van der Hoorn A; Yan JL; Price SJ
    Radiology; 2017 Jul; 284(1):180-190. PubMed ID: 28240563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of Recurrent Glioblastoma from Delayed Radiation Necrosis by Using Voxel-based Multiparametric Analysis of MR Imaging Data.
    Yoon RG; Kim HS; Koh MJ; Shim WH; Jung SC; Kim SJ; Kim JH
    Radiology; 2017 Oct; 285(1):206-213. PubMed ID: 28535120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models.
    Choi Y; Nam Y; Jang J; Shin NY; Lee YS; Ahn KJ; Kim BS; Park JS; Jeon SS; Hong YG
    Eur Radiol; 2021 Apr; 31(4):2084-2093. PubMed ID: 33006658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images.
    Cui Y; Tha KK; Terasaka S; Yamaguchi S; Wang J; Kudo K; Xing L; Shirato H; Li R
    Radiology; 2016 Feb; 278(2):546-53. PubMed ID: 26348233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma.
    Kim JY; Yoon MJ; Park JE; Choi EJ; Lee J; Kim HS
    Neuroradiology; 2019 Nov; 61(11):1261-1272. PubMed ID: 31289886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of FLAIR Volume Changes in Glioblastoma and Prediction of Survival.
    Grossman R; Shimony N; Shir D; Gonen T; Sitt R; Kimchi TJ; Harosh CB; Ram Z
    Ann Surg Oncol; 2017 Mar; 24(3):794-800. PubMed ID: 27766560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial.
    Ellingson BM; Kim HJ; Woodworth DC; Pope WB; Cloughesy JN; Harris RJ; Lai A; Nghiemphu PL; Cloughesy TF
    Radiology; 2014 Apr; 271(1):200-10. PubMed ID: 24475840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of heterogeneity of peritumoral T2 hyperintensity in patients with pretreatment glioblastoma: Prognostic value of MRI-based radiomics.
    Choi Y; Ahn KJ; Nam Y; Jang J; Shin NY; Choi HS; Jung SL; Kim BS
    Eur J Radiol; 2019 Nov; 120():108642. PubMed ID: 31546124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.