BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27326897)

  • 21. Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars.
    Pei Y; Wang Z; Zong S; Cui Y
    J Mater Chem B; 2013 Aug; 1(32):3992-3998. PubMed ID: 32261225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic MOF Substrates for the Rapid and Sensitive Surface-Enhanced Raman Scattering Detection of Uranyl.
    Wang N; Du J; Li X; Ji X; Wu Y; Sun Z
    Anal Chem; 2023 Aug; 95(34):12956-12963. PubMed ID: 37583286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.
    Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B
    ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fine Determination of Monoclinic Phase in Zirconia-Based Implants: A Surface-Enhanced Raman Spectroscopy (SERS) Study.
    Vega MM; Bonifacio A; Lughi V; Sergo V
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2430-2435. PubMed ID: 31492258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity.
    Ndokoye P; Li X; Zhao Q; Li T; Tade MO; Liu S
    J Colloid Interface Sci; 2016 Jan; 462():341-50. PubMed ID: 26476203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes.
    Lim II; Njoki PN; Park HY; Wang X; Wang L; Mott D; Zhong CJ
    Nanotechnology; 2008 Jul; 19(30):305102. PubMed ID: 21828754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: single-particle experiments and computer simulations.
    Tran V; Thiel C; Svejda JT; Jalali M; Walkenfort B; Erni D; Schlücker S
    Nanoscale; 2018 Nov; 10(46):21721-21731. PubMed ID: 30431039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection.
    Moram SSB; Byram C; Soma VR
    RSC Adv; 2023 Jan; 13(4):2620-2630. PubMed ID: 36741174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Nanostar Reshaping Kinetics for Optimal Substrate Fabrication.
    Vang D; Strobbia P
    Appl Spectrosc; 2023 Mar; 77(3):270-280. PubMed ID: 36172843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correct spectral conversion between surface-enhanced raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection.
    Lee K; Irudayaraj J
    Small; 2013 Apr; 9(7):1106-15. PubMed ID: 23281179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy.
    Lee J; Hua B; Park S; Ha M; Lee Y; Fan Z; Ko H
    Nanoscale; 2014 Jan; 6(1):616-23. PubMed ID: 24247586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embedding Raman Tags between Au Nanostar@Nanoshell for Multiplex Immunosensing.
    Yang T; Jiang J
    Small; 2016 Sep; 12(36):4980-4985. PubMed ID: 27273763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals.
    Sheremet E; Milekhin AG; Rodriguez RD; Weiss T; Nesterov M; Rodyakina EE; Gordan OD; Sveshnikova LL; Duda TA; Gridchin VA; Dzhagan VM; Hietschold M; Zahn DR
    Phys Chem Chem Phys; 2015 Sep; 17(33):21198-203. PubMed ID: 25566587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters.
    Souza GR; Levin CS; Hajitou A; Pasqualini R; Arap W; Miller JH
    Anal Chem; 2006 Sep; 78(17):6232-7. PubMed ID: 16944906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity.
    Garcia-Leis A; Torreggiani A; Garcia-Ramos JV; Sanchez-Cortes S
    Nanoscale; 2015 Aug; 7(32):13629-37. PubMed ID: 26206266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties.
    Du J; Yu J; Xiong Y; Lin Z; Zhang H; Yang D
    Phys Chem Chem Phys; 2015 Jan; 17(2):1265-72. PubMed ID: 25420730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.