These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27327355)

  • 1. Chemical Pressure-Driven Incommensurability in CaPd5: Clues to High-Pressure Chemistry Offered by Complex Intermetallics.
    Kilduff BJ; Fredrickson DC
    Inorg Chem; 2016 Jul; 55(13):6781-93. PubMed ID: 27327355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface Nuclei in the Y-Ag-Zn System: Three Chemical Pressure-Templated Phases with Lamellar Mg
    Fredrickson RT; Fredrickson DC
    Inorg Chem; 2024 May; 63(20):9252-9264. PubMed ID: 38709207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallels in Structural Chemistry between the Molecular and Metallic Realms Revealed by Complex Intermetallic Phases.
    Fredrickson DC
    Acc Chem Res; 2018 Feb; 51(2):248-257. PubMed ID: 29384647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics.
    Berns VM; Engelkemier J; Guo Y; Kilduff BJ; Fredrickson DC
    J Chem Theory Comput; 2014 Aug; 10(8):3380-92. PubMed ID: 26588306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Functionality of Complex Intermetallics: Frustration, Chemical Pressure Relief, and Potential Rattling Atoms in Y
    Guo Y; Fredrickson DC
    Inorg Chem; 2016 Oct; 55(20):10397-10405. PubMed ID: 27680537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.
    Berns VM; Fredrickson DC
    Inorg Chem; 2014 Oct; 53(19):10762-71. PubMed ID: 25238606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frustrated and Allowed Structural Transitions: The Theory-Guided Discovery of the Modulated Structure of IrSi.
    Mitchell Warden HE; Fredrickson DC
    J Am Chem Soc; 2019 Dec; 141(49):19424-19435. PubMed ID: 31697079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic packing frustration in complex intermetallic structures: the role of chemical pressure in Ca2Ag7.
    Fredrickson DC
    J Am Chem Soc; 2011 Jul; 133(26):10070-3. PubMed ID: 21619054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The incommensurately and commensurately modulated crystal structures of chromium(II) diphosphate.
    Palatinus L; Dusek M; Glaum R; El Bali B
    Acta Crystallogr B; 2006 Aug; 62(Pt 4):556-66. PubMed ID: 16840805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Consistent Chemical Pressure Analysis: Resolving Atomic Packing Effects through the Iterative Partitioning of Space and Energy.
    Sanders KM; Van Buskirk JS; Hilleke KP; Fredrickson DC
    J Chem Theory Comput; 2023 Jul; 19(13):4273-4285. PubMed ID: 37342942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discerning Chemical Pressure amidst Weak Potentials: Vibrational Modes and Dumbbell/Atom Substitution in Intermetallic Aluminides.
    Hilleke KP; Fredrickson DC
    J Phys Chem A; 2018 Oct; 122(42):8412-8426. PubMed ID: 30278132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transitions in ferroelectric 4-aminopyridinium tetrachloroantimonate(III) - revisited.
    Gągor A
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2018 Apr; 74(Pt 2):217-225. PubMed ID: 29616995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frustrated and Allowed Structural Transitions at the Limits of the BaAl
    Mitchell Warden HE; Lee SB; Fredrickson DC
    Inorg Chem; 2020 Jul; 59(14):10208-10222. PubMed ID: 32644782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templating Structural Progessions in Intermetallics: How Chemical Pressure Directs Helix Formation in the Nowotny Chimney Ladders.
    Lu E; Fredrickson DC
    Inorg Chem; 2019 Apr; 58(7):4063-4066. PubMed ID: 30865438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy-Driven Incommensurability: Chemical Pressure-Guided Polymorphism in PdBi and the Origins of Lock-In Phenomena in Modulated Systems.
    Folkers LC; Mitchell Warden HE; Fredrickson DC; Lidin S
    Inorg Chem; 2020 Apr; 59(7):4936-4949. PubMed ID: 32202768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The modulated structure of Co3Al4Si2: incommensurability and Co-Co interactions in search of filled octadecets.
    Fredrickson RT; Fredrickson DC
    Inorg Chem; 2013 Mar; 52(6):3178-89. PubMed ID: 23445378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Could incommensurability in sulfosalts be more common than thought? The case of meneghinite, CuPb
    Bindi L; Petříček V; Biagioni C; Plášil J; Moëlo Y
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2017 Jun; 73(Pt 3):369-376. PubMed ID: 28572547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT-chemical pressure analysis: visualizing the role of atomic size in shaping the structures of inorganic materials.
    Fredrickson DC
    J Am Chem Soc; 2012 Apr; 134(13):5991-9. PubMed ID: 22404343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of weakly ordered domains in intermetallics: the cooperative effects of atomic packing and electronics in Fe
    Vinokur AI; Hilleke KP; Fredrickson DC
    Acta Crystallogr A Found Adv; 2019 Mar; 75(Pt 2):297-306. PubMed ID: 30821262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Problem solving with pentagons: Tsai-type quasicrystal as a structural response to chemical pressure.
    Berns VM; Fredrickson DC
    Inorg Chem; 2013 Nov; 52(22):12875-7. PubMed ID: 24161006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.