These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27327486)

  • 1. Quantifying the Influence of the Crowded Cytoplasm on Small Molecule Diffusion.
    Kekenes-Huskey PM; Scott CE; Atalay S
    J Phys Chem B; 2016 Aug; 120(33):8696-706. PubMed ID: 27327486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation.
    Kekenes-Huskey PM; Gillette AK; McCammon JA
    J Chem Phys; 2014 May; 140(17):174106. PubMed ID: 24811624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm.
    Ridgway D; Broderick G; Lopez-Campistrous A; Ru'aini M; Winter P; Hamilton M; Boulanger P; Kovalenko A; Ellison MJ
    Biophys J; 2008 May; 94(10):3748-59. PubMed ID: 18234819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water diffusivity in starch-based systems.
    Leslie RB; Carillo PJ; Chung TY; Gilbert SG; Hayakawa K; Marousis S; Saravacos GD; Solberg M
    Adv Exp Med Biol; 1991; 302():365-90. PubMed ID: 1746341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Cell Protein-Protein Contacts: Transient Interactions in the Crowd.
    Rickard MM; Zhang Y; Gruebele M; Pogorelov TV
    J Phys Chem Lett; 2019 Sep; 10(18):5667-5673. PubMed ID: 31483661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants.
    Klann MT; Lapin A; Reuss M
    BMC Syst Biol; 2011 May; 5():71. PubMed ID: 21569565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonmonotonic diffusion of particles among larger attractive crowding spheres.
    Putzel GG; Tagliazucchi M; Szleifer I
    Phys Rev Lett; 2014 Sep; 113(13):138302. PubMed ID: 25302920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonuniform Crowding Enhances Transport.
    Collins M; Mohajerani F; Ghosh S; Guha R; Lee TH; Butler PJ; Sen A; Velegol D
    ACS Nano; 2019 Aug; 13(8):8946-8956. PubMed ID: 31291087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-crowding of AMPA receptors in the excitatory postsynaptic density can effectuate anomalous receptor sub-diffusion.
    Gupta R
    PLoS Comput Biol; 2018 Feb; 14(2):e1005984. PubMed ID: 29444074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computationally Modeling Electrostatic Binding Energetics in a Crowded, Dynamic Environment: Physical Insights from a Peptide-DNA System.
    Perez CP; Elmore DE; Radhakrishnan ML
    J Phys Chem B; 2019 Dec; 123(50):10718-10734. PubMed ID: 31751509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion of proteins in crowded solutions studied by docking-based modeling.
    Singh A; Kundrotas PJ; Vakser IA
    J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39225532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disparity in anomalous diffusion of proteins searching for their target DNA sites in a crowded medium is controlled by the size, shape and mobility of macromolecular crowders.
    Dey P; Bhattacherjee A
    Soft Matter; 2019 Feb; 15(9):1960-1969. PubMed ID: 30539954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Protein Folding in Crowded Conditions.
    Gomez D; Huber K; Klumpp S
    J Phys Chem Lett; 2019 Dec; 10(24):7650-7656. PubMed ID: 31763853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for computing association rate constants of atomistically represented proteins under macromolecular crowding.
    Qin S; Cai L; Zhou HX
    Phys Biol; 2012 Dec; 9(6):066008. PubMed ID: 23197255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational and rotational motions of proteins in a protein crowded environment.
    Zorrilla S; Hink MA; Visser AJ; Lillo MP
    Biophys Chem; 2007 Feb; 125(2-3):298-305. PubMed ID: 17007994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein self-diffusion in crowded solutions.
    Roosen-Runge F; Hennig M; Zhang F; Jacobs RM; Sztucki M; Schober H; Seydel T; Schreiber F
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11815-20. PubMed ID: 21730176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of Crowding Effects on Bimolecular Reaction Rates.
    Berezhkovskii AM; Szabo A
    J Phys Chem B; 2016 Jul; 120(26):5998-6002. PubMed ID: 27096470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lattice-Boltzmann scheme for the simulation of diffusion in intracellular crowded systems.
    Angeles-Martinez L; Theodoropoulos C
    BMC Bioinformatics; 2015 Nov; 16():353. PubMed ID: 26530635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.