These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 27328053)
1. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. Ulloa OA; Huynh MT; Richers CP; Bertke JA; Nilges MJ; Hammes-Schiffer S; Rauchfuss TB J Am Chem Soc; 2016 Jul; 138(29):9234-45. PubMed ID: 27328053 [TBL] [Abstract][Full Text] [Related]
2. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
3. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. Carroll ME; Barton BE; Rauchfuss TB; Carroll PJ J Am Chem Soc; 2012 Nov; 134(45):18843-52. PubMed ID: 23126330 [TBL] [Abstract][Full Text] [Related]
4. Isolation of a mixed valence diiron hydride: evidence for a spectator hydride in hydrogen evolution catalysis. Wang W; Nilges MJ; Rauchfuss TB; Stein M J Am Chem Soc; 2013 Mar; 135(9):3633-9. PubMed ID: 23383865 [TBL] [Abstract][Full Text] [Related]
5. Isomerization of the hydride complexes [HFe2(SR)2(PR3)(x)(CO)(6-x)]+ (x = 2, 3, 4) relevant to the active site models for the [FeFe]-hydrogenases. Barton BE; Zampella G; Justice AK; De Gioia L; Rauchfuss TB; Wilson SR Dalton Trans; 2010 Mar; 39(12):3011-9. PubMed ID: 20221534 [TBL] [Abstract][Full Text] [Related]
6. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights. Huynh MT; Wang W; Rauchfuss TB; Hammes-Schiffer S Inorg Chem; 2014 Oct; 53(19):10301-11. PubMed ID: 25207842 [TBL] [Abstract][Full Text] [Related]
7. Models of the iron-only hydrogenase: a comparison of chelate and bridge isomers of Fe2(CO)4{Ph2PN(R)PPh2}(μ-pdt) as proton-reduction catalysts. Ghosh S; Hogarth G; Hollingsworth N; Holt KB; Richards I; Richmond MG; Sanchez BE; Unwin D Dalton Trans; 2013 May; 42(19):6775-92. PubMed ID: 23503781 [TBL] [Abstract][Full Text] [Related]
8. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site. Chambers GM; Huynh MT; Li Y; Hammes-Schiffer S; Rauchfuss TB; Reijerse E; Lubitz W Inorg Chem; 2016 Jan; 55(2):419-31. PubMed ID: 26421729 [TBL] [Abstract][Full Text] [Related]
9. Interplay of hemilability and redox activity in models of hydrogenase active sites. Ding S; Ghosh P; Darensbourg MY; Hall MB Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9775-E9782. PubMed ID: 29087322 [TBL] [Abstract][Full Text] [Related]
11. Key hydride vibrational modes in [NiFe] hydrogenase model compounds studied by resonance Raman spectroscopy and density functional calculations. Shafaat HS; Weber K; Petrenko T; Neese F; Lubitz W Inorg Chem; 2012 Nov; 51(21):11787-97. PubMed ID: 23039071 [TBL] [Abstract][Full Text] [Related]
12. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer? Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661 [TBL] [Abstract][Full Text] [Related]
13. Diiron dithiolato carbonyls related to the H(ox)CO state of [FeFe]-hydrogenase. Justice AK; Nilges MJ; Rauchfuss TB; Wilson SR; De Gioia L; Zampella G J Am Chem Soc; 2008 Apr; 130(15):5293-301. PubMed ID: 18341276 [TBL] [Abstract][Full Text] [Related]
14. Nickel-iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site. Barton BE; Whaley CM; Rauchfuss TB; Gray DL J Am Chem Soc; 2009 May; 131(20):6942-3. PubMed ID: 19413314 [TBL] [Abstract][Full Text] [Related]
15. In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes. Hugenbruch S; Shafaat HS; Krämer T; Delgado-Jaime MU; Weber K; Neese F; Lubitz W; DeBeer S Phys Chem Chem Phys; 2016 Apr; 18(16):10688-99. PubMed ID: 26924248 [TBL] [Abstract][Full Text] [Related]
16. Theoretical spectroscopy of the Ni(II) intermediate states in the catalytic cycle and the activation of [NiFe] hydrogenases. Krämer T; Kampa M; Lubitz W; van Gastel M; Neese F Chembiochem; 2013 Sep; 14(14):1898-905. PubMed ID: 23703916 [TBL] [Abstract][Full Text] [Related]
17. Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties. Carroll ME; Barton BE; Gray DL; Mack AE; Rauchfuss TB Inorg Chem; 2011 Oct; 50(19):9554-63. PubMed ID: 21866886 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni-Ru model compound. Vaccaro L; Artero V; Canaguier S; Fontecave M; Field MJ Dalton Trans; 2010 Mar; 39(12):3043-9. PubMed ID: 20221538 [TBL] [Abstract][Full Text] [Related]
19. Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. Brecht M; van Gastel M; Buhrke T; Friedrich B; Lubitz W J Am Chem Soc; 2003 Oct; 125(43):13075-83. PubMed ID: 14570480 [TBL] [Abstract][Full Text] [Related]
20. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]