These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Compound Defects and Thermoelectric Properties of Self-Charge Compensated Skutterudites Se Wan S; Huang X; Qiu P; Shi X; Chen L ACS Appl Mater Interfaces; 2017 Jul; 9(27):22713-22724. PubMed ID: 28608676 [TBL] [Abstract][Full Text] [Related]
10. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Shi X; Yang J; Salvador JR; Chi M; Cho JY; Wang H; Bai S; Yang J; Zhang W; Chen L J Am Chem Soc; 2011 May; 133(20):7837-46. PubMed ID: 21524125 [TBL] [Abstract][Full Text] [Related]
11. Unveiling the Structural Behavior under Pressure of Filled M Rodrigues JEFS; Gainza J; Serrano-Sánchez F; Ferrer MM; Fabris GSL; Sambrano JR; Nemes NM; Martínez JL; Popescu C; Alonso JA Inorg Chem; 2021 May; 60(10):7413-7421. PubMed ID: 33900757 [TBL] [Abstract][Full Text] [Related]
12. Influence of Composition and Thermal Treatments on Microhardness of the Filled Skutterudite Sm(y) (Fe(x) Ni(1−x)₄Sb₁₂. Artini C; Carlini R J Nanosci Nanotechnol; 2017 Mar; 17(3):1634-639. PubMed ID: 29693990 [TBL] [Abstract][Full Text] [Related]
13. Multiscale Length Structural Investigation and Thermoelectric Performance of Double-Filled Sr Serrano-Sanchez F; Rodrigues JE; Gainza J; Dejoie C; Dura OJ; Biskup N; Nemes NM; Martínez JL; Alonso JA ACS Mater Au; 2024 May; 4(3):324-334. PubMed ID: 38737123 [TBL] [Abstract][Full Text] [Related]
14. Giant Thermoelectric Efficiency of Single-Filled Skutterudite Nanocomposites: Role of Interface Carrier Filtering. Trivedi V; Tiadi M; Murty BS; Satapathy DK; Battabyal M; Gopalan R ACS Appl Mater Interfaces; 2022 Nov; 14(45):51084-51095. PubMed ID: 36314554 [TBL] [Abstract][Full Text] [Related]
15. The half Heusler system Ti Tavassoli A; Grytsiv A; Rogl G; Romaka VV; Michor H; Reissner M; Bauer E; Zehetbauer M; Rogl P Dalton Trans; 2018 Jan; 47(3):879-897. PubMed ID: 29255824 [TBL] [Abstract][Full Text] [Related]
16. Influence of Sn-substitution on the thermoelectric properties of the clathrate type-I, Ba8Zn(x)Ge(46-x-y)Sn(y). Falmbigl M; Grytsiv A; Rogl P; Yan X; Royanian E; Bauer E Dalton Trans; 2013 Feb; 42(8):2913-20. PubMed ID: 23243666 [TBL] [Abstract][Full Text] [Related]
17. Preparation and thermoelectric properties of sintered type-I clathrates K8Ga(x)Sn(46-x). Hayashi M; Kishimoto K; Kishio K; Akai K; Asada H; Koyanagi T Dalton Trans; 2010 Jan; 39(4):1113-7. PubMed ID: 20066199 [TBL] [Abstract][Full Text] [Related]
18. Raising the Thermoelectric Performance of Fe3CoSb12 Skutterudites via Nd Filling and In-Situ Nanostructuring. Guo L; Cai Z; Xu X; Peng K; Wang G; Wang G; Zhou X J Nanosci Nanotechnol; 2016 Apr; 16(4):3841-7. PubMed ID: 27451721 [TBL] [Abstract][Full Text] [Related]
19. Sn(x)Pt4Sn(y)Sb(12-y): a skutterudite with covalently bonded filler. Liang Y; Borrmann H; Baenitz M; Schnelle W; Budnyk S; Zhao JT; Grin Y Inorg Chem; 2008 Oct; 47(20):9489-96. PubMed ID: 18811146 [TBL] [Abstract][Full Text] [Related]
20. Multi-temperature synchrotron PXRD and physical properties study of half-Heusler TiCoSb. Skovsen I; Bjerg L; Christensen M; Nishibori E; Balke B; Felser C; Iversen BB Dalton Trans; 2010 Nov; 39(42):10154-9. PubMed ID: 20890538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]