These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 27328269)
41. Facile UV-Induced Surface Covalent Modification to Fabricate Durable Superhydrophobic Fabric for Efficient Oil-Water Separation. Zhou M; Liu X; Xu F; Pei Y; Wu L; Tang LC Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299305 [TBL] [Abstract][Full Text] [Related]
42. Fabrication of a biological metal-organic framework based superhydrophobic textile fabric for efficient oil/water separation. Mohamed ME; Abd-El-Nabey BA Sci Rep; 2022 Sep; 12(1):15483. PubMed ID: 36109549 [TBL] [Abstract][Full Text] [Related]
43. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Dai C; Liu N; Cao Y; Chen Y; Lu F; Feng L Soft Matter; 2014 Oct; 10(40):8116-21. PubMed ID: 25177922 [TBL] [Abstract][Full Text] [Related]
44. Facile fabrication of corrosion-resistant superhydrophobic and superoleophilic surfaces with MnWO(4):Dy(3+) microbouquets. Li T; Li Q; Yan J; Li F Dalton Trans; 2014 Apr; 43(15):5801-5. PubMed ID: 24572627 [TBL] [Abstract][Full Text] [Related]
45. Nanosecond Laser-Induced Underwater Superoleophobic and Underoil Superhydrophobic Mesh for Oil/Water Separation. Lian Z; Xu J; Wang Z; Yu Z; Weng Z; Yu H Langmuir; 2018 Mar; 34(9):2981-2988. PubMed ID: 29397752 [TBL] [Abstract][Full Text] [Related]
46. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment. Ryu J; Kim K; Park J; Hwang BG; Ko Y; Kim H; Han J; Seo E; Park Y; Lee SJ Sci Rep; 2017 May; 7(1):1981. PubMed ID: 28512304 [TBL] [Abstract][Full Text] [Related]
47. Inspired by Stenocara Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation. Zeng X; Qian L; Yuan X; Zhou C; Li Z; Cheng J; Xu S; Wang S; Pi P; Wen X ACS Nano; 2017 Jan; 11(1):760-769. PubMed ID: 27936586 [TBL] [Abstract][Full Text] [Related]
48. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method. Ensikat HJ; Mayser M; Barthlott W Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578 [TBL] [Abstract][Full Text] [Related]
51. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869 [TBL] [Abstract][Full Text] [Related]
52. Superhydrophobic 304 Stainless Steel Mesh for the Removal of High-Density Polyethylene Microplastics. Rius-Ayra O; Biserova-Tahchieva A; Sansa-López V; Llorca-Isern N Langmuir; 2022 May; 38(18):5943-5953. PubMed ID: 35465677 [TBL] [Abstract][Full Text] [Related]
53. Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil-water separation and water purification by graphene. Yoon H; Na SH; Choi JY; Latthe SS; Swihart MT; Al-Deyab SS; Yoon SS Langmuir; 2014 Oct; 30(39):11761-9. PubMed ID: 25192514 [TBL] [Abstract][Full Text] [Related]
54. One-Step Covalent Surface Modification to Achieve Oil-Water Separation Performance of a Non-Fluorinated Durable Superhydrophobic Fabric. Zhou M; Li M; Xu F; Yang Y; Pei Y; Yan Y; Wu L ACS Omega; 2021 Sep; 6(37):24139-24146. PubMed ID: 34568692 [TBL] [Abstract][Full Text] [Related]
55. Development of superhydrophobic and superoleophilic CNT and BNNT coated copper meshes for oil/water separation. Hassani F; Aroujalian A; Rashidi A Sci Rep; 2024 Jun; 14(1):14706. PubMed ID: 38926511 [TBL] [Abstract][Full Text] [Related]
56. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. Xu W; Song J; Sun J; Lu Y; Yu Z ACS Appl Mater Interfaces; 2011 Nov; 3(11):4404-14. PubMed ID: 22008385 [TBL] [Abstract][Full Text] [Related]
57. In situ separation and collection of oil from water surface via a novel superoleophilic and superhydrophobic oil containment boom. Wang F; Lei S; Xue M; Ou J; Li W Langmuir; 2014 Feb; 30(5):1281-9. PubMed ID: 24460039 [TBL] [Abstract][Full Text] [Related]
58. Ultrafast one step construction of non-fluorinated superhydrophobic aluminum surfaces with remarkable improvement of corrosion resistance and anti-contamination. Zhang B; Xu W; Zhu Q; Li Y; Hou B J Colloid Interface Sci; 2018 Dec; 532():201-209. PubMed ID: 30081265 [TBL] [Abstract][Full Text] [Related]
59. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance. Li J; Wu R; Jing Z; Yan L; Zha F; Lei Z Langmuir; 2015 Oct; 31(39):10702-7. PubMed ID: 26365307 [TBL] [Abstract][Full Text] [Related]
60. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability. Ishizaki T; Saito N Langmuir; 2010 Jun; 26(12):9749-55. PubMed ID: 20377219 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]