BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 27328430)

  • 1. Structural insights into SAM domain-mediated tankyrase oligomerization.
    DaRosa PA; Ovchinnikov S; Xu W; Klevit RE
    Protein Sci; 2016 Sep; 25(9):1744-52. PubMed ID: 27328430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of tankyrase activity by a catalytic domain dimer interface.
    Fan C; Yarravarapu N; Chen H; Kulak O; Dasari P; Herbert J; Yamaguchi K; Lum L; Zhang X
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1780-1785. PubMed ID: 30055800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tankyrase Sterile α Motif Domain Polymerization Is Required for Its Role in Wnt Signaling.
    Riccio AA; McCauley M; Langelier MF; Pascal JM
    Structure; 2016 Sep; 24(9):1573-81. PubMed ID: 27499439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling.
    Mariotti L; Templeton CM; Ranes M; Paracuellos P; Cronin N; Beuron F; Morris E; Guettler S
    Mol Cell; 2016 Aug; 63(3):498-513. PubMed ID: 27494558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying and Validating Tankyrase Binders and Substrates: A Candidate Approach.
    Pollock K; Ranes M; Collins I; Guettler S
    Methods Mol Biol; 2017; 1608():445-473. PubMed ID: 28695526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains.
    De Rycker M; Price CM
    Mol Cell Biol; 2004 Nov; 24(22):9802-12. PubMed ID: 15509784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for tankyrase-RNF146 interaction reveals noncanonical tankyrase-binding motifs.
    DaRosa PA; Klevit RE; Xu W
    Protein Sci; 2018 Jun; 27(6):1057-1067. PubMed ID: 29604130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional analysis of parameters governing tankyrase-1 interaction with telomeric repeat-binding factor 1 and GDP-mannose 4,6-dehydratase.
    Eisemann T; Langelier MF; Pascal JM
    J Biol Chem; 2019 Oct; 294(40):14574-14590. PubMed ID: 31375564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebrate tankyrase domain structure and sterile alpha motif (SAM)-mediated multimerization.
    De Rycker M; Venkatesan RN; Wei C; Price CM
    Biochem J; 2003 May; 372(Pt 1):87-96. PubMed ID: 12589701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of tankyrase activation by polymerization.
    Pillay N; Mariotti L; Zaleska M; Inian O; Jessop M; Hibbs S; Desfosses A; Hopkins PCR; Templeton CM; Beuron F; Morris EP; Guettler S
    Nature; 2022 Dec; 612(7938):162-169. PubMed ID: 36418402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of the poly(ADP-ribose) polymerase activity of tankyrase 1, a potential regulator of telomere length.
    Rippmann JF; Damm K; Schnapp A
    J Mol Biol; 2002 Oct; 323(2):217-24. PubMed ID: 12381316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a tankyrase 1-telomere repeat factor 1 complex.
    Li B; Qiao R; Wang Z; Zhou W; Li X; Xu W; Rao Z
    Acta Crystallogr F Struct Biol Commun; 2016 Apr; 72(Pt 4):320-7. PubMed ID: 27050267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency.
    Zimmerlin L; Zambidis ET
    Exp Cell Res; 2020 May; 390(1):111935. PubMed ID: 32151493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tankyrase Regulates Neurite Outgrowth through Poly(ADP-ribosyl)ation-Dependent Activation of β-Catenin Signaling.
    Mashimo M; Kita M; Uno A; Nii M; Ishihara M; Honda T; Gotoh-Kinoshita Y; Nomura A; Nakamura H; Murayama T; Kizu R; Fujii T
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR assignment of the ARC4 domain of human tankyrase 2.
    Zaleska M; Pollock K; Collins I; Guettler S; Pfuhl M
    Biomol NMR Assign; 2019 Apr; 13(1):255-260. PubMed ID: 30847846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities.
    Zamudio-Martinez E; Herrera-Campos AB; Muñoz A; Rodríguez-Vargas JM; Oliver FJ
    J Exp Clin Cancer Res; 2021 Apr; 40(1):144. PubMed ID: 33910596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular insights on TNKS1/TNKS2 and inhibitor-IWR1 interactions.
    Kirubakaran P; Kothandan G; Cho SJ; Muthusamy K
    Mol Biosyst; 2014 Feb; 10(2):281-93. PubMed ID: 24291818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1.
    Deng Z; Atanasiu C; Zhao K; Marmorstein R; Sbodio JI; Chi NW; Lieberman PM
    J Virol; 2005 Apr; 79(8):4640-50. PubMed ID: 15795250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage.
    Yang L; Sun L; Teng Y; Chen H; Gao Y; Levine AS; Nakajima S; Lan L
    Nucleic Acids Res; 2017 Apr; 45(7):3906-3921. PubMed ID: 28160604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-Specific Regulation of the Wnt/β-Catenin Pathway by PAGE4 Inhibition of Tankyrase.
    Koirala S; Klein J; Zheng Y; Glenn NO; Eisemann T; Fon Tacer K; Miller DJ; Kulak O; Lu M; Finkelstein DB; Neale G; Tillman H; Vogel P; Strand DW; Lum L; Brautigam CA; Pascal JM; Clements WK; Potts PR
    Cell Rep; 2020 Jul; 32(3):107922. PubMed ID: 32698014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.