BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27328812)

  • 1. A Role for the Chromatin-Remodeling Factor BAZ1A in Neurodevelopment.
    Zaghlool A; Halvardson J; Zhao JJ; Etemadikhah M; Kalushkova A; Konska K; Jernberg-Wiklund H; Thuresson AC; Feuk L
    Hum Mutat; 2016 Sep; 37(9):964-75. PubMed ID: 27328812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells.
    Li X; Ding D; Yao J; Zhou B; Shen T; Qi Y; Ni T; Wei G
    Life Sci; 2019 Jul; 229():225-232. PubMed ID: 31085244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse BAZ1A (ACF1) is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis.
    Dowdle JA; Mehta M; Kass EM; Vuong BQ; Inagaki A; Egli D; Jasin M; Keeney S
    PLoS Genet; 2013 Nov; 9(11):e1003945. PubMed ID: 24244200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exome sequencing in syndromic brain malformations identifies novel mutations in ACTB, and SLC9A6, and suggests BAZ1A as a new candidate gene.
    Weitensteiner V; Zhang R; Bungenberg J; Marks M; Gehlen J; Ralser DJ; Hilger AC; Sharma A; Schumacher J; Gembruch U; Merz WM; Becker A; Altmüller J; Thiele H; Herrmann BG; Odermatt B; Ludwig M; Reutter H
    Birth Defects Res; 2018 Apr; 110(7):587-597. PubMed ID: 29388391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling.
    Snijders Blok L; Madsen E; Juusola J; Gilissen C; Baralle D; Reijnders MR; Venselaar H; Helsmoortel C; Cho MT; Hoischen A; Vissers LE; Koemans TS; Wissink-Lindhout W; Eichler EE; Romano C; Van Esch H; Stumpel C; Vreeburg M; Smeets E; Oberndorff K; van Bon BW; Shaw M; Gecz J; Haan E; Bienek M; Jensen C; Loeys BL; Van Dijck A; Innes AM; Racher H; Vermeer S; Di Donato N; Rump A; Tatton-Brown K; Parker MJ; Henderson A; Lynch SA; Fryer A; Ross A; Vasudevan P; Kini U; Newbury-Ecob R; Chandler K; Male A; ; Dijkstra S; Schieving J; Giltay J; van Gassen KL; Schuurs-Hoeijmakers J; Tan PL; Pediaditakis I; Haas SA; Retterer K; Reed P; Monaghan KG; Haverfield E; Natowicz M; Myers A; Kruer MC; Stein Q; Strauss KA; Brigatti KW; Keating K; Burton BK; Kim KH; Charrow J; Norman J; Foster-Barber A; Kline AD; Kimball A; Zackai E; Harr M; Fox J; McLaughlin J; Lindstrom K; Haude KM; van Roozendaal K; Brunner H; Chung WK; Kooy RF; Pfundt R; Kalscheuer V; Mehta SG; Katsanis N; Kleefstra T
    Am J Hum Genet; 2015 Aug; 97(2):343-52. PubMed ID: 26235985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of
    Gao ZJ; Jiang Q; Chen XL; Chen Q; Ji XN; Mao YY; Feng S; Dong JJ; Xu KM
    Zhonghua Yi Xue Za Zhi; 2018 Nov; 98(42):3426-3432. PubMed ID: 30440138
    [No Abstract]   [Full Text] [Related]  

  • 7. BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription.
    Dias C; Estruch SB; Graham SA; McRae J; Sawiak SJ; Hurst JA; Joss SK; Holder SE; Morton JE; Turner C; Thevenon J; Mellul K; Sánchez-Andrade G; Ibarra-Soria X; Deriziotis P; Santos RF; Lee SC; Faivre L; Kleefstra T; Liu P; Hurles ME; ; Fisher SE; Logan DW
    Am J Hum Genet; 2016 Aug; 99(2):253-74. PubMed ID: 27453576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations.
    Córdova-Fletes C; Domínguez MG; Delint-Ramirez I; Martínez-Rodríguez HG; Rivas-Estilla AM; Barros-Núñez P; Ortiz-López R; Neira VA
    Neurogenetics; 2015 Oct; 16(4):287-98. PubMed ID: 26163108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo mutations in the SET nuclear proto-oncogene, encoding a component of the inhibitor of histone acetyltransferases (INHAT) complex in patients with nonsyndromic intellectual disability.
    Stevens SJC; van der Schoot V; Leduc MS; Rinne T; Lalani SR; Weiss MM; van Hagen JM; Lachmeijer AMA; ; Stockler-Ipsiroglu SG; Lehman A; Brunner HG
    Hum Mutat; 2018 Jul; 39(7):1014-1023. PubMed ID: 29688601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling.
    Cajigas I; Leib DE; Cochrane J; Luo H; Swyter KR; Chen S; Clark BS; Thompson J; Yates JR; Kingston RE; Kohtz JD
    Development; 2015 Aug; 142(15):2641-52. PubMed ID: 26138476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in ARID2 are associated with intellectual disabilities.
    Shang L; Cho MT; Retterer K; Folk L; Humberson J; Rohena L; Sidhu A; Saliganan S; Iglesias A; Vitazka P; Juusola J; O'Donnell-Luria AH; Shen Y; Chung WK
    Neurogenetics; 2015 Oct; 16(4):307-14. PubMed ID: 26238514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backbone and side-chain NMR assignments for the bromodomain of mouse BAZ1A (ACF1).
    Fan K; Chen S; Ge Y; Ye K; Yao Q; Jing J; Zhang J; Tu X; Yao B
    Biomol NMR Assign; 2016 Apr; 10(1):131-4. PubMed ID: 26542424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex.
    Kato S; Fujiki R; Kitagawa H
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):173-8. PubMed ID: 15225768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A de novo mutation in RPL10 causes a rare X-linked ribosomopathy characterized by syndromic intellectual disability and epilepsy: A new case and review of the literature.
    Bourque DK; Hartley T; Nikkel SM; Pohl D; Tétreault M; Kernohan KD; ; Dyment DA
    Eur J Med Genet; 2018 Feb; 61(2):89-93. PubMed ID: 29066376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin.
    Collins N; Poot RA; Kukimoto I; García-Jiménez C; Dellaire G; Varga-Weisz PD
    Nat Genet; 2002 Dec; 32(4):627-32. PubMed ID: 12434153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Modulation of Human Podocyte Vitamin D Receptor in HIV Milieu.
    Chandel N; Ayasolla KS; Lan X; Sultana-Syed M; Chawla A; Lederman R; Vethantham V; Saleem MA; Chander PN; Malhotra A; Singhal PC
    J Mol Biol; 2015 Oct; 427(20):3201-3215. PubMed ID: 26210663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-canonical reader modules of BAZ1A promote recovery from DNA damage.
    Oppikofer M; Sagolla M; Haley B; Zhang HM; Kummerfeld SK; Sudhamsu J; Flynn EM; Bai T; Zhang J; Ciferri C; Cochran AG
    Nat Commun; 2017 Oct; 8(1):862. PubMed ID: 29021563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation.
    Raval-Pandya M; Freedman LP; Li H; Christakos S
    Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome.
    Kitagawa H; Fujiki R; Yoshimura K; Mezaki Y; Uematsu Y; Matsui D; Ogawa S; Unno K; Okubo M; Tokita A; Nakagawa T; Ito T; Ishimi Y; Nagasawa H; Matsumoto T; Yanagisawa J; Kato S
    Cell; 2003 Jun; 113(7):905-17. PubMed ID: 12837248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.