These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 27328986)
1. Covalently Functionalized Graphene by Radical Polymers for Graphene-Based High-Performance Cathode Materials. Li Y; Jian Z; Lang M; Zhang C; Huang X ACS Appl Mater Interfaces; 2016 Jul; 8(27):17352-9. PubMed ID: 27328986 [TBL] [Abstract][Full Text] [Related]
2. Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers. Huang Q; Choi D; Cosimbescu L; Lemmon JP Phys Chem Chem Phys; 2013 Dec; 15(48):20921-8. PubMed ID: 24202318 [TBL] [Abstract][Full Text] [Related]
3. Pyrene-Functionalized PTMA by NRC for Greater π-π Stacking with rGO and Enhanced Electrochemical Properties. Zhang K; Hu Y; Wang L; Monteiro MJ; Jia Z ACS Appl Mater Interfaces; 2017 Oct; 9(40):34900-34908. PubMed ID: 28956591 [TBL] [Abstract][Full Text] [Related]
4. Covalent Confinement of Sulfur Copolymers onto Graphene Sheets Affords Ultrastable Lithium-Sulfur Batteries with Fast Cathode Kinetics. Ma J; Fan J; Chen S; Yang X; Hui KN; Zhang H; Bielawski CW; Geng J ACS Appl Mater Interfaces; 2019 Apr; 11(14):13234-13243. PubMed ID: 30892015 [TBL] [Abstract][Full Text] [Related]
5. Tacticity influence on the electrochemical reactivity of group transfer polymerization-synthesized PTMA. López-Peña HA; Hernández-Muñoz LS; Frontana-Uribe BA; González FJ; González I; Frontana C; Cardoso J J Phys Chem B; 2012 May; 116(18):5542-50. PubMed ID: 22510068 [TBL] [Abstract][Full Text] [Related]
6. Preparation of a reduced graphene oxide wrapped lithium-rich cathode material by self-assembly. Lim SN; Ahn W; Yeon SH; Park SB Chem Asian J; 2014 Oct; 9(10):2946-52. PubMed ID: 25145600 [TBL] [Abstract][Full Text] [Related]
7. Free standing reduced graphene oxide film cathodes for lithium ion batteries. Ha SH; Jeong YS; Lee YJ ACS Appl Mater Interfaces; 2013 Dec; 5(23):12295-303. PubMed ID: 24229056 [TBL] [Abstract][Full Text] [Related]
8. Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. Lin N; Zhou J; Wang L; Zhu Y; Qian Y ACS Appl Mater Interfaces; 2015 Jan; 7(1):409-14. PubMed ID: 25494648 [TBL] [Abstract][Full Text] [Related]
9. Soluble reduced graphene oxide sheets grafted with polypyridylruthenium-derivatized polystyrene brushes as light harvesting antenna for photovoltaic applications. Fang Z; Ito A; Stuart AC; Luo H; Chen Z; Vinodgopal K; You W; Meyer TJ; Taylor DK ACS Nano; 2013 Sep; 7(9):7992-8002. PubMed ID: 23978313 [TBL] [Abstract][Full Text] [Related]
10. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. Banerjee PC; Lobo DE; Middag R; Ng WK; Shaibani ME; Majumder M ACS Appl Mater Interfaces; 2015 Feb; 7(6):3655-64. PubMed ID: 25612667 [TBL] [Abstract][Full Text] [Related]
12. Reduced graphene oxide modified Li2FeSiO4/C composite with enhanced electrochemical performance as cathode material for lithium ion batteries. Zhang LL; Duan S; Yang XL; Peng G; Liang G; Huang YH; Jiang Y; Ni SB; Li M ACS Appl Mater Interfaces; 2013 Dec; 5(23):12304-9. PubMed ID: 24195648 [TBL] [Abstract][Full Text] [Related]
13. Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. Pham VH; Dang TT; Hur SH; Kim EJ; Chung JS ACS Appl Mater Interfaces; 2012 May; 4(5):2630-6. PubMed ID: 22512434 [TBL] [Abstract][Full Text] [Related]
14. Design and Synthesis of Double-Functional Polymer Composite Layer Coating To Enhance the Electrochemical Performance of the Ni-Rich Cathode at the Upper Cutoff Voltage. Yang H; Wu K; Hu G; Peng Z; Cao Y; Du K ACS Appl Mater Interfaces; 2019 Feb; 11(8):8556-8566. PubMed ID: 30714709 [TBL] [Abstract][Full Text] [Related]
15. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Fu Y; Zhu J; Hu C; Wu X; Wang X Nanoscale; 2014 Nov; 6(21):12555-64. PubMed ID: 25180888 [TBL] [Abstract][Full Text] [Related]
16. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material. Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in li-ion batteries. Li ZF; Zhang H; Liu Q; Liu Y; Stanciu L; Xie J ACS Appl Mater Interfaces; 2014 Nov; 6(21):18894-900. PubMed ID: 25296182 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of Bi Zhai X; Gao J; Xue R; Xu X; Wang L; Tian Q; Liu Y J Colloid Interface Sci; 2018 May; 518():242-251. PubMed ID: 29471201 [TBL] [Abstract][Full Text] [Related]
19. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity. Wang H; Bi SG; Ye YS; Xue Y; Xie XL; Mai YW Nanoscale; 2015 Feb; 7(8):3548-57. PubMed ID: 25630871 [TBL] [Abstract][Full Text] [Related]
20. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]