These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27329426)

  • 21. Reprogramming of plant cells by filamentous plant-colonizing microbes.
    Doehlemann G; Requena N; Schaefer P; Brunner F; O'Connell R; Parker JE
    New Phytol; 2014 Dec; 204(4):803-14. PubMed ID: 25539003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin and evolution of the plant immune system.
    Han GZ
    New Phytol; 2019 Apr; 222(1):70-83. PubMed ID: 30575972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants.
    Das SN; Madhuprakash J; Sarma PV; Purushotham P; Suma K; Manjeet K; Rambabu S; Gueddari NE; Moerschbacher BM; Podile AR
    Crit Rev Biotechnol; 2015 Mar; 35(1):29-43. PubMed ID: 24020506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants.
    Wawra S; Fesel P; Widmer H; Timm M; Seibel J; Leson L; Kesseler L; Nostadt R; Hilbert M; Langen G; Zuccaro A
    Nat Commun; 2016 Oct; 7():13188. PubMed ID: 27786272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How eukaryotic filamentous pathogens evade plant recognition.
    Oliveira-Garcia E; Valent B
    Curr Opin Microbiol; 2015 Aug; 26():92-101. PubMed ID: 26162502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants.
    Fuertes-Rabanal M; Largo-Gosens A; Fischer A; Munzert KS; Carrasco-López C; Sánchez-Vallet A; Engelsdorf T; Mélida H
    J Exp Bot; 2024 Sep; ():. PubMed ID: 39225413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant LysM proteins: modules mediating symbiosis and immunity.
    Gust AA; Willmann R; Desaki Y; Grabherr HM; Nürnberger T
    Trends Plant Sci; 2012 Aug; 17(8):495-502. PubMed ID: 22578284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial recognition and evasion of host immunity.
    Pel MJ; Pieterse CM
    J Exp Bot; 2013 Mar; 64(5):1237-48. PubMed ID: 23095994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant immunity and symbiosis signaling mediated by LysM receptors.
    Desaki Y; Miyata K; Suzuki M; Shibuya N; Kaku H
    Innate Immun; 2018 Feb; 24(2):92-100. PubMed ID: 29105533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Host-microbe and microbe-microbe interactions in the evolution of obligate plant parasitism.
    Kemen AC; Agler MT; Kemen E
    New Phytol; 2015 Jun; 206(4):1207-28. PubMed ID: 25622918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Host-microbe interactions: shaping the evolution of the plant immune response.
    Chisholm ST; Coaker G; Day B; Staskawicz BJ
    Cell; 2006 Feb; 124(4):803-14. PubMed ID: 16497589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development.
    Fujikawa T; Kuga Y; Yano S; Yoshimi A; Tachiki T; Abe K; Nishimura M
    Mol Microbiol; 2009 Aug; 73(4):553-70. PubMed ID: 19602150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interplay Between Innate Immunity and the Plant Microbiota.
    Hacquard S; Spaepen S; Garrido-Oter R; Schulze-Lefert P
    Annu Rev Phytopathol; 2017 Aug; 55():565-589. PubMed ID: 28645232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk.
    Poulain D; Jouault T
    Curr Opin Microbiol; 2004 Aug; 7(4):342-9. PubMed ID: 15358252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonself perception in plant innate immunity.
    Dubery IA; Sanabria NM; Huang JC
    Adv Exp Med Biol; 2012; 738():79-107. PubMed ID: 22399375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant-microbe interactions: organelles and the cytoskeleton in action.
    Park E; Nedo A; Caplan JL; Dinesh-Kumar SP
    New Phytol; 2018 Feb; 217(3):1012-1028. PubMed ID: 29250789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of Plant Defense System in Response to Microbial Interactions.
    Nishad R; Ahmed T; Rahman VJ; Kareem A
    Front Microbiol; 2020; 11():1298. PubMed ID: 32719660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions.
    Soto MJ; Domínguez-Ferreras A; Pérez-Mendoza D; Sanjuán J; Olivares J
    Cell Microbiol; 2009 Mar; 11(3):381-8. PubMed ID: 19134114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endogenous peptide elicitors in higher plants.
    Yamaguchi Y; Huffaker A
    Curr Opin Plant Biol; 2011 Aug; 14(4):351-7. PubMed ID: 21636314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbe-associated molecular patterns (MAMPs) probe plant immunity.
    Bittel P; Robatzek S
    Curr Opin Plant Biol; 2007 Aug; 10(4):335-41. PubMed ID: 17652011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.