These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2732954)
1. Fenfluramine selectively and differentially decreases the density of serotonergic nerve terminals in rat brain: evidence from immunocytochemical studies. Appel NM; Contrera JF; De Souza EB J Pharmacol Exp Ther; 1989 Jun; 249(3):928-43. PubMed ID: 2732954 [TBL] [Abstract][Full Text] [Related]
2. Effects of high-dose fenfluramine treatment on monoamine uptake sites in rat brain: assessment using quantitative autoradiography. Appel NM; Mitchell WM; Contrera JF; De Souza EB Synapse; 1990; 6(1):33-44. PubMed ID: 2144664 [TBL] [Abstract][Full Text] [Related]
3. Reversible, short-lasting, and dose-dependent effect of (+)-fenfluramine on neocortical serotonergic axons. Kalia M Brain Res; 1991 May; 548(1-2):111-25. PubMed ID: 1868326 [TBL] [Abstract][Full Text] [Related]
4. Effects of repeated fenfluramine administration on indices of monoamine function in rat brain: pharmacokinetic, dose response, regional specificity and time course data. Zaczek R; Battaglia G; Culp S; Appel NM; Contrera JF; De Souza EB J Pharmacol Exp Ther; 1990 Apr; 253(1):104-12. PubMed ID: 2329498 [TBL] [Abstract][Full Text] [Related]
5. Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. Mamounas LA; Mullen CA; O'Hearn E; Molliver ME J Comp Neurol; 1991 Dec; 314(3):558-86. PubMed ID: 1814975 [TBL] [Abstract][Full Text] [Related]
6. 3,4-methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Wang X; Baumann MH; Xu H; Rothman RB Synapse; 2004 Sep; 53(4):240-8. PubMed ID: 15266556 [TBL] [Abstract][Full Text] [Related]
7. Long-term effects of p-chloroamphetamine and related drugs on central serotonergic mechanisms. Sanders-Bush E; Bushing JA; Sulser F J Pharmacol Exp Ther; 1975 Jan; 192(1):33-41. PubMed ID: 1123726 [TBL] [Abstract][Full Text] [Related]
8. Neurotoxic effects of +/-fenfluramine and phenteramine, alone and in combination, on monoamine neurons in the mouse brain. McCann UD; Yuan J; Ricaurte GA Synapse; 1998 Nov; 30(3):239-46. PubMed ID: 9776127 [TBL] [Abstract][Full Text] [Related]
9. Effect of depletion of brain serotonin by repeated fenfluramine on neurochemical and anorectic effects of acute fenfluramine. Kleven MS; Schuster CR; Seiden LS J Pharmacol Exp Ther; 1988 Sep; 246(3):822-8. PubMed ID: 2458447 [TBL] [Abstract][Full Text] [Related]
10. Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Axt KJ; Molliver ME Synapse; 1991 Dec; 9(4):302-13. PubMed ID: 1722593 [TBL] [Abstract][Full Text] [Related]
11. High-dose fenfluramine administration decreases serotonin transporter binding, but not serotonin transporter protein levels, in rat forebrain. Rothman RB; Jayanthi S; Wang X; Dersch CM; Cadet JL; Prisinzano T; Rice KC; Baumann MH Synapse; 2003 Dec; 50(3):233-9. PubMed ID: 14515341 [TBL] [Abstract][Full Text] [Related]
12. Immunohistochemical study of short- and long-term effects of DL-fenfluramine on the serotonergic innervation of the rat hippocampal formation. Sotelo C Brain Res; 1991 Feb; 541(2):309-26. PubMed ID: 2054644 [TBL] [Abstract][Full Text] [Related]
13. Regeneration of serotonergic immunoreactive fibers in the brain of 5,6-dihydroxytryptamine treated rat. Ueda S; Kawata M J Hirnforsch; 1994; 35(1):159-80. PubMed ID: 8021452 [TBL] [Abstract][Full Text] [Related]
14. Coincidence of blockade of synaptosomal 5-hydroxytryptamine uptake and decrease in tryptophan hydroxylase activity: effects of fenfluramine. Knapp S; Mandell AJ J Pharmacol Exp Ther; 1976 Jul; 198(1):123-32. PubMed ID: 933002 [TBL] [Abstract][Full Text] [Related]
15. Transgenic mice with high levels of superoxide dismutase activity are protected from the neurotoxic effects of 2'-NH2-MPTP on serotonergic and noradrenergic nerve terminals. Andrews AM; Ladenheim B; Epstein CJ; Cadet JL; Murphy DL Mol Pharmacol; 1996 Dec; 50(6):1511-9. PubMed ID: 8967972 [TBL] [Abstract][Full Text] [Related]
16. The distribution and origin of serotonin-containing fibers in the septal area: a combined immunohistochemical and fluorescent retrograde tracing study in the rat. Köhler C; Chan-Palay V; Steinbusch H J Comp Neurol; 1982 Jul; 209(1):91-111. PubMed ID: 6749914 [TBL] [Abstract][Full Text] [Related]
17. B-50 (GAP-43) immunoreactivity is rarely detected within intact catecholaminergic and serotonergic axons innervating the brain and spinal cord of the adult rat, but is associated with these axons following lesion. Alonso G; Ridet JL; Oestreicher AB; Gispen WH; Privat A Exp Neurol; 1995 Jul; 134(1):35-48. PubMed ID: 7545587 [TBL] [Abstract][Full Text] [Related]
18. In vivo correlates of central serotonin function after high-dose fenfluramine administration. Baumann MH; Ayestas MA; Rothman RB Ann N Y Acad Sci; 1998 May; 844():138-52. PubMed ID: 9668672 [TBL] [Abstract][Full Text] [Related]
19. Possible involvement of endogenous opiates in the tolerance to the anorectic effect of fenfluramine. Groppetti A; Parenti M; Dellavedova L; Tirone F J Pharmacol Exp Ther; 1984 Feb; 228(2):446-53. PubMed ID: 6694120 [TBL] [Abstract][Full Text] [Related]
20. Development of 5-HT1A receptor radioligands to determine receptor density and changes in endogenous 5-HT. Jagoda EM; Lang L; Tokugawa J; Simmons A; Ma Y; Contoreggi C; Kiesewetter D; Eckelman WC Synapse; 2006 May; 59(6):330-41. PubMed ID: 16440292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]