These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27329563)

  • 1. Strain-engineered diffusive atomic switching in two-dimensional crystals.
    Kalikka J; Zhou X; Dilcher E; Wall S; Li J; Simpson RE
    Nat Commun; 2016 Jun; 7():11983. PubMed ID: 27329563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary design of interfacial phase change van der Waals heterostructures.
    Kalikka J; Zhou X; Behera J; Nannicini G; Simpson RE
    Nanoscale; 2016 Oct; 8(42):18212-18220. PubMed ID: 27759127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain Relaxation in "2D/2D and 2D/3D Systems": Highly Textured Mica/Bi
    Zhang H; Yimam DT; de Graaf S; Momand J; Vermeulen PA; Wei Y; Noheda B; Kooi BJ
    ACS Nano; 2021 Feb; 15(2):2869-2879. PubMed ID: 33476130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of van der Waals reconfiguration in superlattice phase change materials.
    Chen X; Shen J; Jia S; Zheng Y; Lv S; Song Z; Zhu M
    Nanoscale; 2019 Sep; 11(36):16954-16961. PubMed ID: 31490513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-Change Memory Materials by Design: A Strain Engineering Approach.
    Zhou X; Kalikka J; Ji X; Wu L; Song Z; Simpson RE
    Adv Mater; 2016 Apr; 28(15):3007-16. PubMed ID: 26854333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Reconfiguration of van der Waals Gaps as the Key to Switching in GeTe/Sb
    Kolobov AV; Fons P; Saito Y; Tominaga J
    ACS Omega; 2017 Sep; 2(9):6223-6232. PubMed ID: 31457867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain engineering of van der Waals heterostructures.
    Vermeulen PA; Mulder J; Momand J; Kooi BJ
    Nanoscale; 2018 Jan; 10(3):1474-1480. PubMed ID: 29303191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observations of the reversible vacancy ordering process in van der Waals-bonded Ge-Sb-Te thin films and GeTe-Sb
    Lotnyk A; Dankwort T; Hilmi I; Kienle L; Rauschenbach B
    Nanoscale; 2019 Jun; 11(22):10838-10845. PubMed ID: 31135011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating the Bulk Band Structure of Artificially Constructed van der Waals Chalcogenide Heterostructures.
    Saito Y; Makino K; Fons P; Kolobov AV; Tominaga J
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23918-23925. PubMed ID: 28649834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast interfacial transformation from 2D- to 3D-bonded structures in layered Ge-Sb-Te thin films and heterostructures.
    Behrens M; Lotnyk A; Gerlach JW; Hilmi I; Abel T; Lorenz P; Rauschenbach B
    Nanoscale; 2018 Dec; 10(48):22946-22953. PubMed ID: 30500030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistive switching mechanism of GeTe-Sb
    Nakamura H; Rungger I; Sanvito S; Inoue N; Tominaga J; Asai Y
    Nanoscale; 2017 Jul; 9(27):9386-9395. PubMed ID: 28657077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic reconfiguration of van der Waals gaps within GeTe-Sb
    Momand J; Wang R; Boschker JE; Verheijen MA; Calarco R; Kooi BJ
    Nanoscale; 2017 Jun; 9(25):8774-8780. PubMed ID: 28621784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb₂Te₃ superlattices.
    Momand J; Wang R; Boschker JE; Verheijen MA; Calarco R; Kooi BJ
    Nanoscale; 2015 Dec; 7(45):19136-43. PubMed ID: 26523888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework.
    Boix-Constant C; García-López V; Navarro-Moratalla E; Clemente-León M; Zafra JL; Casado J; Guinea F; Mañas-Valero S; Coronado E
    Adv Mater; 2022 Mar; 34(11):e2110027. PubMed ID: 35032055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlattices based on van der Waals 2D materials.
    Ryu YK; Frisenda R; Castellanos-Gomez A
    Chem Commun (Camb); 2019 Sep; 55(77):11498-11510. PubMed ID: 31483427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological insulating in GeTe/Sb2Te3 phase-change superlattice.
    Sa B; Zhou J; Sun Z; Tominaga J; Ahuja R
    Phys Rev Lett; 2012 Aug; 109(9):096802. PubMed ID: 23002870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering Thermal and Electrical Properties of Sb
    Kwon H; Khan AI; Perez C; Asheghi M; Pop E; Goodson KE
    Nano Lett; 2021 Jul; 21(14):5984-5990. PubMed ID: 34270270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
    Cao Y; Fatemi V; Demir A; Fang S; Tomarken SL; Luo JY; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Kaxiras E; Ashoori RC; Jarillo-Herrero P
    Nature; 2018 Apr; 556(7699):80-84. PubMed ID: 29512654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio investigation of topological phase transitions induced by pressure in trilayer van der Waals structures: the example of h-BN/SnTe/h-BN.
    Lima MP; Besse R; Da Silva JLF
    J Phys Condens Matter; 2021 Jan; 33(2):025003. PubMed ID: 32756023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures.
    Lee JS; Brittman S; Yu D; Park H
    J Am Chem Soc; 2008 May; 130(19):6252-8. PubMed ID: 18402451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.