BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27329790)

  • 1. Mechanisms of removal of three widespread pharmaceuticals by two clay materials.
    Dordio AV; Miranda S; Prates Ramalho JP; Carvalho AJP
    J Hazard Mater; 2017 Feb; 323(Pt A):575-583. PubMed ID: 27329790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA.
    Dordio A; Carvalho AJ; Teixeira DM; Dias CB; Pinto AP
    Bioresour Technol; 2010 Feb; 101(3):886-92. PubMed ID: 19783427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave preparation of raw vermiculite for use in removal of copper ions from aqueous solutions.
    Lee T
    Environ Technol; 2011; 32(11-12):1195-203. PubMed ID: 21970161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of vermiculite-derived sustainable adsorbents for removal of venlafaxine.
    Silva A; Martinho S; Stawiński W; Węgrzyn A; Figueiredo S; Santos LHMLM; Freitas O
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):17066-17076. PubMed ID: 29637454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DFT study on the adsorption of benzodiazepines to vermiculite surfaces.
    Carvalho AJ; Dordio AV; Ramalho JP
    J Mol Model; 2014 Jul; 20(7):2336. PubMed ID: 25069137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs.
    Stawiński W; Freitas O; Chmielarz L; Węgrzyn A; Komędera K; Błachowski A; Figueiredo S
    Chemosphere; 2016 Jun; 153():115-29. PubMed ID: 27015571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and thermodynamic studies on removal of Cu(II) from aqueous solutions using soil nanoclays.
    Chen YM; Tsao TM; Wang MK; Yu S; Liu CC; Li HC; Chiu CY; Wang LC
    Water Environ Res; 2015 Jan; 87(1):88-95. PubMed ID: 25630131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent.
    Sumathi KM; Mahimairaja S; Naidu R
    Bioresour Technol; 2005 Feb; 96(3):309-16. PubMed ID: 15474931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent.
    Stawiński W; Węgrzyn A; Freitas O; Chmielarz L; Mordarski G; Figueiredo S
    Sci Total Environ; 2017 Jan; 576():398-408. PubMed ID: 27794226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of clay treatment on remediation of diethylketone contaminated wastewater: uptake, equilibrium and kinetic studies.
    Quintelas C; Figueiredo H; Tavares T
    J Hazard Mater; 2011 Feb; 186(2-3):1241-8. PubMed ID: 21176863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems.
    Dordio AV; Teimão J; Ramalho I; Carvalho AJ; Candeias AJ
    Sci Total Environ; 2007 Jul; 380(1-3):237-46. PubMed ID: 17379272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of oily waters using vermiculite.
    Mysore D; Viraraghavan T; Jin YC
    Water Res; 2005 Jul; 39(12):2643-53. PubMed ID: 15979121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.
    Bonvin F; Jost L; Randin L; Bonvin E; Kohn T
    Water Res; 2016 Mar; 90():90-99. PubMed ID: 26724443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral.
    El-Bayaa AA; Badawy NA; Alkhalik EA
    J Hazard Mater; 2009 Oct; 170(2-3):1204-9. PubMed ID: 19524366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of membrane technology, activated charcoal, and a micelle-clay complex for removal of the acidic pharmaceutical mefenamic acid.
    Khalaf S; Al-Rimawi F; Khamis M; Nir S; Bufo SA; Scrano L; Mecca G; Karaman R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1655-62. PubMed ID: 23947703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms.
    Malamis S; Katsou E
    J Hazard Mater; 2013 May; 252-253():428-61. PubMed ID: 23644019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of Cr(VI) from aqueous solutions by spent activated clay.
    Weng CH; Sharma YC; Chu SH
    J Hazard Mater; 2008 Jun; 155(1-2):65-75. PubMed ID: 18162297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical-chemical interactions between pharmaceuticals and biochar in synthetic and real urine.
    Solanki A; Boyer TH
    Chemosphere; 2019 Mar; 218():818-826. PubMed ID: 30508800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of Cr(VI) from fine ferrochrome dust using exfoliated vermiculite.
    Mulange Wa Mulange D; Garbers-Craig AM
    J Hazard Mater; 2012 Jul; 223-224():46-52. PubMed ID: 22584106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.
    Hasan Z; Jeon J; Jhung SH
    J Hazard Mater; 2012 Mar; 209-210():151-7. PubMed ID: 22277335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.