These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 27329831)
1. Screening for Adulterants in Liquid Milk Using a Portable Raman Miniature Spectrometer with Immersion Probe. Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE Appl Spectrosc; 2017 Feb; 71(2):308-312. PubMed ID: 27329831 [TBL] [Abstract][Full Text] [Related]
2. Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well. Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE J Dairy Sci; 2016 Oct; 99(10):7821-7831. PubMed ID: 27474982 [TBL] [Abstract][Full Text] [Related]
3. Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE J Dairy Sci; 2016 Apr; 99(4):2520-2536. PubMed ID: 26874427 [TBL] [Abstract][Full Text] [Related]
4. Continuous temperature-dependent Raman spectroscopy of melamine and structural analog detection in milk powder. Schmidt WF; Broadhurst CL; Qin J; Lee H; Nguyen JK; Chao K; Hapeman CJ; Shelton DR; Kim MS Appl Spectrosc; 2015 Mar; 69(3):398-406. PubMed ID: 25664966 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging. Qin J; Chao K; Kim MS Food Chem; 2013 Jun; 138(2-3):998-1007. PubMed ID: 23411206 [TBL] [Abstract][Full Text] [Related]
6. Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique. Qin J; Kim MS; Chao K; Dhakal S; Lee H; Cho BK; Mo C Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):152-161. PubMed ID: 27879171 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics. Tian H; Chen S; Li D; Lou X; Chen C; Yu H J Dairy Sci; 2022 Sep; 105(9):7242-7252. PubMed ID: 35863924 [TBL] [Abstract][Full Text] [Related]
8. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering. Giovannozzi AM; Rolle F; Sega M; Abete MC; Marchis D; Rossi AM Food Chem; 2014 Sep; 159():250-6. PubMed ID: 24767052 [TBL] [Abstract][Full Text] [Related]
9. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor. Hu Y; Lu X J Food Sci; 2016 May; 81(5):N1272-80. PubMed ID: 27061315 [TBL] [Abstract][Full Text] [Related]
10. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk. Yazgan NN; Genis HE; Bulat T; Topcu A; Durna S; Yetisemiyen A; Boyaci IH J Sci Food Agric; 2020 Oct; 100(13):4756-4765. PubMed ID: 32458436 [TBL] [Abstract][Full Text] [Related]
11. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods? Finete Vde L; GouvĂȘa MM; Marques FF; Netto AD Food Chem; 2013 Dec; 141(4):3649-55. PubMed ID: 23993532 [TBL] [Abstract][Full Text] [Related]
12. Determination of emerging nitrogenous economic adulterants in milk proteins by high-performance liquid chromatography/compact mass spectrometry. Draher J; Ehling S; Cellar N; Reddy T; Henion J; Sousou N Rapid Commun Mass Spectrom; 2016 Jun; 30(11):1265-72. PubMed ID: 27173108 [TBL] [Abstract][Full Text] [Related]
13. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Hussain A; Sun DW; Pu H Food Chem; 2020 Jul; 317():126429. PubMed ID: 32109658 [TBL] [Abstract][Full Text] [Related]
14. Variance of Commercial Powdered Milks Analyzed by Proton Nuclear Magnetic Resonance and Impact on Detection of Adulterants. Harnly J; Bergana MM; Adams KM; Xie Z; Moore JC J Agric Food Chem; 2018 Aug; 66(32):8478-8488. PubMed ID: 29697263 [TBL] [Abstract][Full Text] [Related]
15. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device. Li D; Lv DY; Zhu QX; Li H; Chen H; Wu MM; Chai YF; Lu F Food Chem; 2017 Jun; 224():382-389. PubMed ID: 28159284 [TBL] [Abstract][Full Text] [Related]
16. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Botelho BG; Reis N; Oliveira LS; Sena MM Food Chem; 2015 Aug; 181():31-7. PubMed ID: 25794717 [TBL] [Abstract][Full Text] [Related]
17. Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles. Wen ZQ; Li G; Ren D Appl Spectrosc; 2011 May; 65(5):514-21. PubMed ID: 21513594 [TBL] [Abstract][Full Text] [Related]
18. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry. Abernethy G; Higgs K J Chromatogr A; 2013 May; 1288():10-20. PubMed ID: 23540766 [TBL] [Abstract][Full Text] [Related]
19. Qualitative and semi-quantitative analysis of melamine in liquid milk based on surface-enhanced Raman spectroscopy. Yang Q; Deng X; Niu B; Lin H; Jing J; Chen Q Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123143. PubMed ID: 37478706 [TBL] [Abstract][Full Text] [Related]
20. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Hussain A; Sun DW; Pu H Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jun; 36(6):851-862. PubMed ID: 31034331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]