These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 27329988)
1. Impact of Oxy-Fuel Conditions on Elemental Mercury Re-Emission in Wet Flue Gas Desulfurization Systems. Fernández-Miranda N; Lopez-Anton MA; Torre-Santos T; Díaz-Somoano M; Martínez-Tarazona MR Environ Sci Technol; 2016 Jul; 50(13):7247-53. PubMed ID: 27329988 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems. Ochoa-González R; Díaz-Somoano M; Martínez-Tarazona MR J Hazard Mater; 2014 Jul; 276():157-63. PubMed ID: 24887118 [TBL] [Abstract][Full Text] [Related]
3. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury. Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897 [TBL] [Abstract][Full Text] [Related]
4. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water. Lopez-Anton MA; Ferrera-Lorenzo N; Fuente E; Díaz-Somoano M; Suarez-Ruíz I; Martínez-Tarazona MR; Ruiz B Chemosphere; 2015 Apr; 125():191-7. PubMed ID: 25585865 [TBL] [Abstract][Full Text] [Related]
5. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions. Córdoba P; Maroto-Valer M; Delgado MA; Diego R; Font O; Querol X Environ Res; 2016 Feb; 145():154-161. PubMed ID: 26697809 [TBL] [Abstract][Full Text] [Related]
6. Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China. Liu S; Chen J; Cao Y; Yang H; Chen C; Jia W J Air Waste Manag Assoc; 2019 Feb; 69(2):234-245. PubMed ID: 30396327 [TBL] [Abstract][Full Text] [Related]
7. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Chou CP; Chiu CH; Chang TC; Hsi HC J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737 [TBL] [Abstract][Full Text] [Related]
8. Gaseous mercury re-emission from wet flue gas desulfurization wastewater aeration basins: A review. Hsu CJ; Atkinson JD; Chung A; Hsi HC J Hazard Mater; 2021 Oct; 420():126546. PubMed ID: 34252671 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of Speciated Mercury Emissions from Coal Combustion in Air and Oxygen-Enriched Environment. Sun Y; Lv G; Zhang H; Zhang X; Bu X; Wang X; Zhang W; Tong Y Bull Environ Contam Toxicol; 2019 May; 102(5):695-700. PubMed ID: 31065732 [TBL] [Abstract][Full Text] [Related]
10. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China. Chen B; Liu G; Sun R Arch Environ Contam Toxicol; 2016 May; 70(4):724-33. PubMed ID: 26883032 [TBL] [Abstract][Full Text] [Related]
11. Effect of oxy-combustion flue gas on mercury oxidation. Fernández-Miranda N; Lopez-Anton MA; Díaz-Somoano M; Martínez-Tarazona MR Environ Sci Technol; 2014 Jun; 48(12):7164-70. PubMed ID: 24877895 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal. Roy B; Chen L; Bhattacharya S Environ Sci Technol; 2014 Dec; 48(24):14844-50. PubMed ID: 25402169 [TBL] [Abstract][Full Text] [Related]
13. The capture of oxidized mercury from simulated desulphurization aqueous solutions. Ochoa-González R; Díaz-Somoano M; Martínez-Tarazona MR J Environ Manage; 2013 May; 120():55-60. PubMed ID: 23500649 [TBL] [Abstract][Full Text] [Related]
14. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry. Chen C; Liu S; Gao Y; Liu Y ScientificWorldJournal; 2014; 2014():581724. PubMed ID: 24737981 [TBL] [Abstract][Full Text] [Related]
15. Mercury re-emission in flue gas multipollutants simultaneous absorption system. Liu Y; Wang Q; Mei R; Wang H; Weng X; Wu Z Environ Sci Technol; 2014 Dec; 48(23):14025-30. PubMed ID: 25360573 [TBL] [Abstract][Full Text] [Related]
16. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system. Wang Y; Liu Y; Wu Z; Mo J; Cheng B J Hazard Mater; 2010 Nov; 183(1-3):902-7. PubMed ID: 20739119 [TBL] [Abstract][Full Text] [Related]
17. Migration and distribution characteristics of typical organic pollutants in condensable particulate matter of coal-fired flue gas and by-products of wet flue gas desulfurization system. Xu Z; Wu Y; Liu S; Tang M; Lu S Environ Sci Pollut Res Int; 2024 Apr; 31(17):26170-26181. PubMed ID: 38498134 [TBL] [Abstract][Full Text] [Related]
18. Active methods of mercury removal from flue gases. Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741 [TBL] [Abstract][Full Text] [Related]
19. Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system. Cheng T; Zhou X; Yang L; Wu H; Fan H J Environ Sci (China); 2020 Feb; 88():72-80. PubMed ID: 31862081 [TBL] [Abstract][Full Text] [Related]
20. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations. Niksa S; Fujiwara N J Air Waste Manag Assoc; 2005 Jul; 55(7):970-7. PubMed ID: 16111136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]