These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27330136)

  • 1. Comprehensive analysis of high-throughput screens with HiTSeekR.
    List M; Schmidt S; Christiansen H; Rehmsmeier M; Tan Q; Mollenhauer J; Baumbach J
    Nucleic Acids Res; 2016 Aug; 44(14):6639-48. PubMed ID: 27330136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Management of High-Throughput Screening Libraries with SAVANAH.
    List M; Elnegaard MP; Schmidt S; Christiansen H; Tan Q; Mollenhauer J; Baumbach J
    SLAS Discov; 2017 Feb; 22(2):196-202. PubMed ID: 27729504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GUItars: a GUI tool for analysis of high-throughput RNA interference screening data.
    Goktug AN; Ong SS; Chen T
    PLoS One; 2012; 7(11):e49386. PubMed ID: 23185323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens.
    Perrimon N; Friedman A; Mathey-Prevot B; Eggert US
    Drug Discov Today; 2007 Jan; 12(1-2):28-33. PubMed ID: 17198970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens.
    Iles LR; Bartholomeusz GA
    Methods Mol Biol; 2016; 1470():121-35. PubMed ID: 27581289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HTSvis: a web app for exploratory data analysis and visualization of arrayed high-throughput screens.
    Scheeder C; Heigwer F; Boutros M
    Bioinformatics; 2017 Sep; 33(18):2960-2962. PubMed ID: 28505270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss-of-Function RNAi Screen to Identify Necrosis-Signaling Molecules.
    Moquin DM; Chan FK
    Methods Mol Biol; 2018; 1857():11-18. PubMed ID: 30136226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CrossCheck: an open-source web tool for high-throughput screen data analysis.
    Najafov J; Najafov A
    Sci Rep; 2017 Jul; 7(1):5855. PubMed ID: 28724888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid and affordable screening platform for membrane protein trafficking.
    Snyder JC; Pack TF; Rochelle LK; Chakraborty SK; Zhang M; Eaton AW; Bai Y; Ernst LA; Barak LS; Waggoner AS; Caron MG
    BMC Biol; 2015 Dec; 13():107. PubMed ID: 26678094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering Seed Sequence Based Off-Target Effects in a Large-Scale RNAi Reporter Screen for E-Cadherin Expression.
    Adams R; Nicke B; Pohlenz HD; Sohler F
    PLoS One; 2015; 10(9):e0137640. PubMed ID: 26361354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vitro High-Throughput RNAi Screening to Accelerate the Process of Target Identification and Drug Development.
    Yin H; Kassner M
    Methods Mol Biol; 2016; 1470():137-49. PubMed ID: 27581290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features.
    Murie C; Barette C; Lafanechère L; Nadon R
    J Biomol Screen; 2014 Jun; 19(5):661-71. PubMed ID: 24352083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An interactive web-based application for Comprehensive Analysis of RNAi-screen Data.
    Dutta B; Azhir A; Merino LH; Guo Y; Revanur S; Madhamshettiwar PB; Germain RN; Smith JA; Simpson KJ; Martin SE; Buehler E; Fraser ID
    Nat Commun; 2016 Feb; 7():10578. PubMed ID: 26902267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TOPS: a versatile software tool for statistical analysis and visualization of combinatorial gene-gene and gene-drug interaction screens.
    Muellner MK; Duernberger G; Ganglberger F; Kerzendorfer C; Uras IZ; Schoenegger A; Bagienski K; Colinge J; Nijman SM
    BMC Bioinformatics; 2014 Apr; 15():98. PubMed ID: 24712852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the microRNA pathway with small molecules.
    Li Y; Ji P; Jin P
    Bioorg Med Chem; 2013 Oct; 21(20):6119-23. PubMed ID: 23791866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating experimental and analytic approaches to improve data quality in genome-wide RNAi screens.
    Zhang XD; Espeseth AS; Johnson EN; Chin J; Gates A; Mitnaul LJ; Marine SD; Tian J; Stec EM; Kunapuli P; Holder DJ; Heyse JF; Strulovici B; Ferrer M
    J Biomol Screen; 2008 Jun; 13(5):378-89. PubMed ID: 18480473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.