These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27330561)

  • 1. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling.
    Mizuno H; Kasuga S; Kawahigashi H
    Biotechnol Biofuels; 2016; 9():127. PubMed ID: 27330561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.
    Bihmidine S; Baker RF; Hoffner C; Braun DM
    BMC Plant Biol; 2015 Jul; 15():186. PubMed ID: 26223524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiology and whole-plant carbon partitioning during stem sugar accumulation in sweet dwarf sorghum.
    Babst BA; Karve A; Sementilli A; Dweikat I; Braun DM
    Planta; 2021 Sep; 254(4):80. PubMed ID: 34546416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes?
    Milne RJ; Byrt CS; Patrick JW; Grof CP
    Front Plant Sci; 2013; 4():223. PubMed ID: 23805151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root lodging is a physical stress that changes gene expression from sucrose accumulation to degradation in sorghum.
    Mizuno H; Kasuga S; Kawahigashi H
    BMC Plant Biol; 2018 Jan; 18(1):2. PubMed ID: 29298675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem sugar accumulation in sweet sorghum - activity and expression of sucrose metabolizing enzymes and sucrose transporters.
    Qazi HA; Paranjpe S; Bhargava S
    J Plant Physiol; 2012 Apr; 169(6):605-13. PubMed ID: 22325624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AtSWEET11 and AtSWEET12 transporters function in tandem to modulate sugar flux in plants.
    Fatima U; Balasubramaniam D; Khan WA; Kandpal M; Vadassery J; Arockiasamy A; Senthil-Kumar M
    Plant Direct; 2023 Mar; 7(3):e481. PubMed ID: 36911252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum.
    Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X
    Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems.
    Bihmidine S; Julius BT; Dweikat I; Braun DM
    Plant Signal Behav; 2016; 11(1):e1117721. PubMed ID: 26619184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.
    Li Y; Tu M; Feng Y; Wang W; Messing J
    Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of the raffinose family oligosaccharides pathway in
    McKinley BA; Thakran M; Zemelis-Durfee S; Huang X; Brandizzi F; Rooney WL; Mansfield SD; Mullet JE
    Front Plant Sci; 2022; 13():1062264. PubMed ID: 36570942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar accumulation enhancement in sorghum stem is associated with reduced reproductive sink strength and increased phloem unloading activity.
    Xue X; Beuchat G; Wang J; Yu YC; Moose S; Chen J; Chen LQ
    Front Plant Sci; 2023; 14():1233813. PubMed ID: 37767289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice Transcription Factor OsDOF11 Modulates Sugar Transport by Promoting Expression of Sucrose Transporter and SWEET Genes.
    Wu Y; Lee SK; Yoo Y; Wei J; Kwon SY; Lee SW; Jeon JS; An G
    Mol Plant; 2018 Jun; 11(6):833-845. PubMed ID: 29656028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological, Metabolome and Gene Expression Analyses Reveal the Accumulation and Biosynthesis Pathways of Soluble Sugars and Amino Acids in Sweet Sorghum under Osmotic Stresses.
    Cui YN; Yan SJ; Zhang YN; Wang R; Song LL; Ma Y; Guo H; Yang PZ
    Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics.
    Hu W; Hua X; Zhang Q; Wang J; Shen Q; Zhang X; Wang K; Yu Q; Lin YR; Ming R; Zhang J
    BMC Plant Biol; 2018 Nov; 18(1):270. PubMed ID: 30404601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar Accumulation in Leaves of Arabidopsis
    Gebauer P; Korn M; Engelsdorf T; Sonnewald U; Koch C; Voll LM
    Front Plant Sci; 2017; 8():1378. PubMed ID: 28848581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose Transporter Localization and Function in Phloem Unloading in Developing Stems.
    Milne RJ; Perroux JM; Rae AL; Reinders A; Ward JM; Offler CE; Patrick JW; Grof CP
    Plant Physiol; 2017 Feb; 173(2):1330-1341. PubMed ID: 27986867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems.
    Calviño M; Bruggmann R; Messing J
    BMC Genomics; 2011 Jul; 12():356. PubMed ID: 21740560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.