These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27331372)

  • 1. Improved Vertical Streambed Flux Estimation Using Multiple Diurnal Temperature Methods in Series.
    Irvine DJ; Briggs MA; Cartwright I; Scruggs CR; Lautz LK
    Ground Water; 2017 Jan; 55(1):73-80. PubMed ID: 27331372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange.
    Irvine DJ; Briggs MA; Lautz LK; Gordon RP; McKenzie JM; Cartwright I
    Ground Water; 2017 Jan; 55(1):10-26. PubMed ID: 27696430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.
    Sebok E; Engesgaard P; Duque C
    Environ Monit Assess; 2017 Aug; 189(9):469. PubMed ID: 28840428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat as a groundwater tracer in shallow and deep heterogeneous media: Analytical solution, spreadsheet tool, and field applications.
    Kurylyk BL; Irvine DJ; Carey SK; Briggs MA; Werkema DD; Bonham M
    Hydrol Process; 2017 Jul; 31(14):2648-2661. PubMed ID: 30505070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater flow estimation using temperature-depth profiles in a complex environment and a changing climate.
    Irvine DJ; Kurylyk BL; Cartwright I; Bonham M; Post VEA; Banks EW; Simmons CT
    Sci Total Environ; 2017 Jan; 574():272-281. PubMed ID: 27639024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating long-term patterns of decreasing groundwater discharge through a lake-bottom permeable reactive barrier.
    McCobb TD; Briggs MA; LeBlanc DR; Day-Lewis FD; Johnson CD
    J Environ Manage; 2018 Aug; 220():233-245. PubMed ID: 29783177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing streambed hydraulic conductivity and their implications on stream-aquifer interaction: a conceptual review.
    Naganna SR; Deka PC; Ch S; Hansen WF
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24765-24789. PubMed ID: 28988330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1DTempPro V2: New Features for Inferring Groundwater/Surface-Water Exchange.
    Koch FW; Voytek EB; Day-Lewis FD; Healy R; Briggs MA; Lane JW; Werkema D
    Ground Water; 2016 May; 54(3):434-9. PubMed ID: 26372016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release from Streambed to Water Column during Baseflow Periods: A Modeling Study.
    Park Y; Pachepsky Y; Hong EM; Shelton D; Coppock C
    J Environ Qual; 2017 Jan; 46(1):219-226. PubMed ID: 28177403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the finite volume point dilution method for measurement of groundwater fluxes in a fractured aquifer.
    Jamin P; Goderniaux P; Bour O; Le Borgne T; Englert A; Longuevergne L; Brouyère S
    J Contam Hydrol; 2015 Nov; 182():244-55. PubMed ID: 26519822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Imagery of Groundwater Seeps: Possibilities and Limitations.
    Mundy E; Gleeson T; Roberts M; Baraer M; McKenzie JM
    Ground Water; 2017 Mar; 55(2):160-170. PubMed ID: 27576019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using heat to characterize streambed water flux variability in four stream reaches.
    Essaid HI; Zamora CM; McCarthy KA; Vogel JR; Wilson JT
    J Environ Qual; 2008; 37(3):1010-23. PubMed ID: 18453424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Monitoring Design for Streambed Heat Tracing: Numerical Simulation and Sandbox Experiments.
    Ju L; Zhang J; Wu L; Zeng L
    Ground Water; 2019 Jul; 57(4):534-546. PubMed ID: 30155983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures.
    Kalbus E; Schmidt C; Bayer-Raich M; Leschik S; Reinstorf F; Balcke GU; Schirmer M
    Environ Pollut; 2007 Aug; 148(3):808-16. PubMed ID: 17399875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Soil Type and Thermal Boundary on Predicting Temperature Profiles and Groundwater Fluxes.
    Chang CH; Lin YF; Shiau YJ; Tsai YZ; Tsai JP
    Ground Water; 2023 Mar; 61(2):203-214. PubMed ID: 36710476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of water, heat, and solute flux through streambeds around small dams.
    Fanelli RM; Lautz LK
    Ground Water; 2008; 46(5):671-87. PubMed ID: 18522652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting Variations in Groundwater Flows from Repeated Distributed Thermal Perturbation Tests.
    Hausner MB; Kryder L; Klenke J; Reinke R; Tyler SW
    Ground Water; 2016 Jul; 54(4):559-68. PubMed ID: 26714003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-series temperature analyses indicate conduction and diffusion are dominant heat-transfer processes in fine sediment, low-flow streams.
    Scotch CG; Murgulet D; Constantz J
    Sci Total Environ; 2021 May; 768():144367. PubMed ID: 33434811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the N(2)/Ar technique to measuring soil-atmosphere N(2) fluxes.
    Yang WH; Silver WL
    Rapid Commun Mass Spectrom; 2012 Feb; 26(4):449-59. PubMed ID: 22279021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.