BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27331617)

  • 1. Occurrence of Benzoic Acid Esters as Putative Catabolites of Prunasin in Senescent Leaves of Prunus laurocerasus.
    Sendker J; Ellendorff T; Hölzenbein A
    J Nat Prod; 2016 Jul; 79(7):1724-9. PubMed ID: 27331617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of primary amide glucosides from cyanogenic glucosides.
    Sendker J; Nahrstedt A
    Phytochemistry; 2009 Feb; 70(3):388-93. PubMed ID: 19195667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.
    Santos Pimenta LP; Schilthuizen M; Verpoorte R; Choi YH
    Phytochem Anal; 2014; 25(2):122-6. PubMed ID: 24115144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between cyanogenic compounds in kernels, leaves, and roots of sweet and bitter kernelled almonds.
    Dicenta F; Martínez-Gómez P; Grané N; Martín ML; León A; Cánovas JA; Berenguer V
    J Agric Food Chem; 2002 Mar; 50(7):2149-52. PubMed ID: 11902971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatographic determination of cyanoglycosides prunasin and amygdalin in plant extracts using a porous graphitic carbon column.
    Berenguer-Navarro V; Giner-Galván RM; Grané-Teruel N; Arrazola-Paternina G
    J Agric Food Chem; 2002 Nov; 50(24):6960-3. PubMed ID: 12428943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS.
    Hooi Poay T; Sui Kiong L; Cheng Hock C
    Phytochem Anal; 2011; 22(6):516-25. PubMed ID: 21495106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of cyanogenic glycosides: A review.
    Cressey P; Reeve J
    Food Chem Toxicol; 2019 Mar; 125():225-232. PubMed ID: 30615957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal Changes Affect Root Prunasin Concentration in Prunus serotina and Override Species Interactions between P. serotina and Quercus petraea.
    Robakowski P; Bielinis E; Stachowiak J; Mejza I; Bułaj B
    J Chem Ecol; 2016 Mar; 42(3):202-14. PubMed ID: 26961681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering.
    Del Cueto J; Ionescu IA; Pičmanová M; Gericke O; Motawia MS; Olsen CE; Campoy JA; Dicenta F; Møller BL; Sánchez-Pérez R
    Front Plant Sci; 2017; 8():800. PubMed ID: 28579996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanogenic glucosides in grapevine: polymorphism, identification and developmental patterns.
    Franks TK; Hayasaka Y; Choimes S; van Heeswijck R
    Phytochemistry; 2005 Jan; 66(2):165-73. PubMed ID: 15652573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Content and distribution of prunasin in Perilla frutescens.
    Akatsuka R; Ito M
    J Nat Med; 2023 Jan; 77(1):207-218. PubMed ID: 36169782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the microheterogeneity and aglycone specificity-conferring residues of black cherry prunasin hydrolases.
    Zhou J; Hartmann S; Shepherd BK; Poulton JE
    Plant Physiol; 2002 Jul; 129(3):1252-64. PubMed ID: 12114579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larvae of the fall webworm, Hyphantria cunea, inhibit cyanogenesis in Prunus serotina.
    Fitzgerald TD
    J Exp Biol; 2008 Mar; 211(Pt 5):671-7. PubMed ID: 18281329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt.
    Goodger JQ; Choo TY; Woodrow IE
    Oecologia; 2007 Oct; 153(4):799-808. PubMed ID: 17605051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prunasin production using engineered Escherichia coli expressing UGT85A47 from Japanese apricot and UDP-glucose biosynthetic enzyme genes.
    Yamaguchi T; Asano Y
    Biosci Biotechnol Biochem; 2018 Nov; 82(11):2021-2029. PubMed ID: 30027801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum.
    Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN
    J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx.
    Gleadow RM; Woodrow IE
    Tree Physiol; 2000 May; 20(9):591-598. PubMed ID: 12651423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk of Poisoning from Garden Plants: Misidentification between Laurel and Cherry Laurel.
    Malaspina P; Betuzzi F; Ingegneri M; Smeriglio A; Cornara L; Trombetta D
    Toxins (Basel); 2022 Oct; 14(11):. PubMed ID: 36355976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface morphology and chemistry of Prunus laurocerasus L. leaves: a study using X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectrometry, atomic-force microscopy and scanning-electron microscopy.
    Perkins MC; Roberts CJ; Briggs D; Davies MC; Friedmann A; Hart CA; Bell GA
    Planta; 2005 Apr; 221(1):123-34. PubMed ID: 15565289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.