These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27331900)

  • 1. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals.
    Jang Y; Yanover D; Čapek RK; Shapiro A; Grumbach N; Kauffmann Y; Sashchiuk A; Lifshitz E
    J Phys Chem Lett; 2016 Jul; 7(13):2602-9. PubMed ID: 27331900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.
    Tu R; Xie Y; Bertoni G; Lak A; Gaspari R; Rapallo A; Cavalli A; Trizio LD; Manna L
    J Am Chem Soc; 2016 Jun; 138(22):7082-90. PubMed ID: 27177274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-Controlled Narrow-Gap SnTe Nanostructures: From Nanocubes to Nanorods and Nanowires.
    Guo S; Fidler AF; He K; Su D; Chen G; Lin Q; Pietryga JM; Klimov VI
    J Am Chem Soc; 2015 Dec; 137(48):15074-7. PubMed ID: 26545157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dark-red-emitting CdTe/Cd1-x Znx S core/shell quantum dots: preparation and properties.
    Yang P; Murase N
    Luminescence; 2013; 28(5):713-8. PubMed ID: 22941972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Mechanisms in the Formation of SnTe Nanocrystals.
    O'Neill SW; Krauss TD
    J Am Chem Soc; 2022 Apr; 144(14):6251-6260. PubMed ID: 35348326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bandgap and Structure Engineering via Cation Exchange: From Binary Ag2S to Ternary AgInS2, Quaternary AgZnInS alloy and AgZnInS/ZnS Core/Shell Fluorescent Nanocrystals for Bioimaging.
    Song J; Ma C; Zhang W; Li X; Zhang W; Wu R; Cheng X; Ali A; Yang M; Zhu L; Xia R; Xu X
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24826-36. PubMed ID: 27575872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Electron-Injection Channels of Heterostructured ZnSe@CdTe Nanocrystals for Surface-Chemistry-Involved Electrochemiluminescence.
    He Y; Yang L; Zhang F; Zhang B; Zou G
    J Phys Chem Lett; 2018 Oct; 9(20):6089-6095. PubMed ID: 30285453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core and Shell Contributions to the Phonon Spectra of CdTe/CdS Quantum Dots.
    Dzhagan V; Mazur N; Kapush O; Selyshchev O; Karnaukhov A; Yeshchenko OA; Danylenko MI; Yukhymchuk V; Zahn DRT
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metastable CdTe@HgTe Core@Shell Nanostructures Obtained by Partial Cation Exchange Evolve into Sintered CdTe Films Upon Annealing.
    Rosina I; Martín-García B; Spirito D; Dang Z; Gariano G; Marras S; Prato M; Krahne R; De Trizio L; Manna L
    Chem Mater; 2020 Apr; 32(7):2978-2985. PubMed ID: 33814700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telluride Nanocrystals with Adjustable Amorphous Shell Thickness and Core-Shell Structure Modulation by Aqueous Cation Exchange.
    Li X; Su M; Wang YC; Xu M; Tong M; Haigh SJ; Zhang J
    Inorg Chem; 2022 Mar; 61(9):3989-3996. PubMed ID: 35191681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals.
    Groeneveld E; Witteman L; Lefferts M; Ke X; Bals S; Van Tendeloo G; Donega Cde M
    ACS Nano; 2013 Sep; 7(9):7913-30. PubMed ID: 23941394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Synthesis of High-Quality AgGaS
    Bai T; Wang X; Dong Y; Xing S; Shi Z; Feng S
    Inorg Chem; 2020 May; 59(9):5975-5982. PubMed ID: 32286807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cluster synthesis of branched CdTe nanocrystals for use in light-emitting diodes.
    Chin PT; Stouwdam JW; van Bavel SS; Janssen RA
    Nanotechnology; 2008 May; 19(20):205602. PubMed ID: 21825740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) luminescent nanocrystals.
    Quan Z; Wang Z; Yang P; Lin J; Fang J
    Inorg Chem; 2007 Feb; 46(4):1354-60. PubMed ID: 17243762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au
    Hu C; Chen W; Xie Y; Verma SK; Destro P; Zhan G; Chen X; Zhao X; Schuck PJ; Kriegel I; Manna L
    Nanoscale; 2018 Feb; 10(6):2781-2789. PubMed ID: 29359781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase.
    Gu Z; Zou L; Fang Z; Zhu W; Zhong X
    Nanotechnology; 2008 Apr; 19(13):135604. PubMed ID: 19636153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Core-Shell AuCu@Ag Nanocrystals through the Nanoscale Kirkendall Effect.
    Yu X; Chen S; Bian Z; Li W; Bo Z
    Inorg Chem; 2023 May; 62(17):6851-6855. PubMed ID: 37067958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous synthesis of glutathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS core/shell/shell nanocrystal heterostructures.
    Samanta A; Deng Z; Liu Y
    Langmuir; 2012 May; 28(21):8205-15. PubMed ID: 22551311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid and facile method for hydrothermal synthesis of CdTe nanocrystals under mild conditions.
    Yang R; Yan Y; Mu Y; Ji W; Li X; Zou M; Fei Q; Jin Q
    J Nanosci Nanotechnol; 2006 Jan; 6(1):215-20. PubMed ID: 16573098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS-AgAuS Yolk-Shell Nanocrystals and Their Visible Light Photocatalytic Applications.
    Feng J; Liu J; Cheng X; Liu J; Xu M; Zhang J
    Adv Sci (Weinh); 2018 Jan; 5(1):1700376. PubMed ID: 29375968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.