BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27332298)

  • 1. Instrumented Shoes for Real-Time Activity Monitoring Applications.
    Moufawad El Achkar C; Lenoble-Hoskovec C; Major K; Paraschiv-Ionescu A; Büla C; Aminian K
    Stud Health Technol Inform; 2016; 225():663-7. PubMed ID: 27332298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A WSN healthcare monitoring system for elderly people in geriatric facilities.
    Yu X; Weller P; Grattan KT
    Stud Health Technol Inform; 2015; 210():567-71. PubMed ID: 25991212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foot worn inertial sensors for gait assessment and rehabilitation based on motorized shoes.
    Aminian K; Mariani B; Paraschiv-Ionescu A; Hoskovec C; Bula C; Penders J; Tacconi C; Marcellini F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5820-3. PubMed ID: 22255663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wireless sensor insole for collecting gait data.
    Rösevall J; Rusu C; Talavera G; Carrabina J; Garcia J; Carenas C; Breuil F; Reixach E; Torrent M; Burkard S; Colitti W
    Stud Health Technol Inform; 2014; 200():176-8. PubMed ID: 24851988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumented shoes for activity classification in the elderly.
    Moufawad el Achkar C; Lenoble-Hoskovec C; Paraschiv-Ionescu A; Major K; Büla C; Aminian K
    Gait Posture; 2016 Feb; 44():12-7. PubMed ID: 27004626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a Footwear-Based Gait Analysis System With Action-Related Feedback.
    Minto S; Zanotto D; Boggs EM; Rosati G; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):971-980. PubMed ID: 26561476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an in-shoe pressure-sensitive device for gait analysis.
    De Rossi SM; Lenzi T; Vitiello N; Donati M; Persichetti A; Giovacchini F; Vecchi F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5637-40. PubMed ID: 22255618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperation among wirelessly connected static and mobile sensor nodes for surveillance applications.
    de Freitas EP; Heimfarth T; Vinel A; Wagner FR; Pereira CE; Larsson T
    Sensors (Basel); 2013 Sep; 13(10):12903-28. PubMed ID: 24072028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and development of a sensorized wireless toy for measuring infants' manual actions.
    Serio SM; Cecchi F; Assaf T; Laschi C; Dario P
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):444-53. PubMed ID: 23559063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a platform to combine sensor networks and home robots to improve fall detection in the home environment.
    Della Toffola L; Patel S; Chen BR; Ozsecen YM; Puiatti A; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5331-4. PubMed ID: 22255542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable wireless multi-parameter sensor module for physiological monitoring.
    Liverud AE; Vedum J; Fleurey F; Seeberg TM
    Stud Health Technol Inform; 2012; 177():210-5. PubMed ID: 22942056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.
    Grenez F; Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Sensors (Basel); 2013 Jul; 13(8):9679-703. PubMed ID: 23899935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait analysis using floor markers and inertial sensors.
    Do TN; Suh YS
    Sensors (Basel); 2012; 12(2):1594-611. PubMed ID: 22438727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time daily activity classification with wireless sensor networks using Hidden Markov Model.
    He J; Li H; Tan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3192-5. PubMed ID: 18002674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of wireless sensors networks in health applications.
    Zubiete ED; Luque LF; Rodríguez AV; González IG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1789-93. PubMed ID: 22254675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study.
    Di Rosa M; Hausdorff JM; Stara V; Rossi L; Glynn L; Casey M; Burkard S; Cherubini A
    Gait Posture; 2017 Jun; 55():6-11. PubMed ID: 28407507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fall detection algorithm for the elderly using acceleration sensors on the shoes.
    Sim SY; Jeon HS; Chung GS; Kim SK; Kwon SJ; Lee WK; Park KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4935-8. PubMed ID: 22255445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IEEE 802.14.5/ZigBee Based WSNs - WPANs and Innovative Application in Medical Health Care Systems.
    Zhang Z
    Stud Health Technol Inform; 2014; 207():125-34. PubMed ID: 25488218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.