These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 2733253)
1. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens. Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253 [TBL] [Abstract][Full Text] [Related]
2. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
3. Covalent change in alpha crystallin in opaque and transparent sections from the same human cataractous lens. Kodama T; Kodama T; Horwitz J; Takemoto L Jpn J Ophthalmol; 1990; 34(1):44-52. PubMed ID: 2362373 [TBL] [Abstract][Full Text] [Related]
4. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Sanderson J; Marcantonio JM; Duncan G Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870 [TBL] [Abstract][Full Text] [Related]
5. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
6. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
7. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins. Kodama T; Wong R; Takemoto L Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549 [TBL] [Abstract][Full Text] [Related]
8. Analysis of microdissected cataractous human lenses. Horwitz J; Neuhaus R; Dockstader J Invest Ophthalmol Vis Sci; 1981 Oct; 21(4):616-9. PubMed ID: 7287351 [TBL] [Abstract][Full Text] [Related]
9. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase. Molnár GA; Nemes V; Biró Z; Ludány A; Wagner Z; Wittmann I Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866 [TBL] [Abstract][Full Text] [Related]
10. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
12. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
13. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract]. Zhao HR; Hu SQ; Ren XH Zhonghua Yan Ke Za Zhi; 1994 May; 30(3):186-8. PubMed ID: 7842996 [TBL] [Abstract][Full Text] [Related]
14. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
15. Chromatofocusing for separation of human cataractous lens low molecular weight proteins. Kabasawa I; Watanabe M; Kimura M Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752 [TBL] [Abstract][Full Text] [Related]
16. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Su SP; McArthur JD; Andrew Aquilina J Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829 [TBL] [Abstract][Full Text] [Related]
17. Analysis of low molecular weight fractions in human senile cataractous lens. Takehana M; Takemoto LJ; Iwata S Jpn J Ophthalmol; 1983; 27(4):585-91. PubMed ID: 6668751 [TBL] [Abstract][Full Text] [Related]
19. Comparison of microdissected sections from the human cataractous lens by antisera to synthetic peptides. Takemoto L; Kodama T; Wolfe J; Chylack L Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1210-3. PubMed ID: 3596997 [TBL] [Abstract][Full Text] [Related]
20. Characterization of water-insoluble proteins in human lens nuclei. Kamei A; Iwata S; Horwitz J Jpn J Ophthalmol; 1987; 31(3):433-9. PubMed ID: 3430859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]