BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27332854)

  • 1. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.
    Lee JY; Chaimongkalayon N; Lim J; Ha HY; Moon SH
    Water Sci Technol; 2016; 73(12):3064-71. PubMed ID: 27332854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption characteristics of vanadium on different resin-active carbon composite electrodes in capacitive deionization.
    Cui Y; Bao S; Zhang Y; Duan J
    Chemosphere; 2018 Dec; 212():34-40. PubMed ID: 30138853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of V(V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode.
    Bao S; Duan J; Zhang Y
    Chemosphere; 2018 Oct; 208():14-20. PubMed ID: 29857207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite Graphene-Containing Porous Materials from Carbon for Capacitive Deionization of Water.
    Bakhia T; Khamizov RK; Bavizhev ZR; Bavizhev MD; Konov MA; Kozlov DA; Tikhonova SA; Maslakov KI; Ashurov MS; Melezhik AV; Kurnosov DA; Burakov AE; Tkachev AG
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI).
    Lee JY; Seo SJ; Yun SH; Moon SH
    Water Res; 2011 Nov; 45(17):5375-80. PubMed ID: 21777933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.
    Hatzell KB; Hatzell MC; Cook KM; Boota M; Housel GM; McBride A; Kumbur EC; Gogotsi Y
    Environ Sci Technol; 2015 Mar; 49(5):3040-7. PubMed ID: 25633260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitive deionization of a RO brackish water by AC/graphene composite electrodes.
    Chong LG; Chen PA; Huang JY; Huang HL; Wang HP
    Chemosphere; 2018 Jan; 191():296-301. PubMed ID: 29045931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor.
    Guzmán A; Nava JL; Coreño O; Rodríguez I; Gutiérrez S
    Chemosphere; 2016 Feb; 144():2113-20. PubMed ID: 26583293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated Carbon Blended with Reduced Graphene Oxide Nanoflakes for Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization.
    Tang W; Kovalsky P; Cao B; Waite TD
    Water Res; 2016 Aug; 99():112-121. PubMed ID: 27151285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization.
    Tang W; Kovalsky P; He D; Waite TD
    Water Res; 2015 Nov; 84():342-9. PubMed ID: 26278188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.