These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27332854)

  • 21. Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes.
    Dong Q; Wang G; Wu T; Peng S; Qiu J
    J Colloid Interface Sci; 2015 May; 446():373-8. PubMed ID: 25595622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon dioxide-activated mesoporous date palm fronds carbon integrated with MnO
    Hussain H; Jilani A; Salah N; Memić A; Ansari MO; Alshahrie A
    Water Environ Res; 2024 May; 96(6):e11038. PubMed ID: 38797821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs.
    Phuoc NM; Jung E; Tran NAT; Lee YW; Yoo CY; Kang BG; Cho Y
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33105663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Soft Electrodes in Capacitive Deionization of Solutions.
    Ahualli S; Iglesias GR; Fernández MM; Jiménez ML; Delgado ÁV
    Environ Sci Technol; 2017 May; 51(9):5326-5333. PubMed ID: 28368580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of pore structure on the high-performance capacitive deionization using chemically activated carbon nanofibers.
    Im JS; Kim JG; Lee YS
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2268-73. PubMed ID: 24745222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated active biochar filter and capacitive deionization system for high-performance removal of arsenic from groundwater.
    Cuong DV; Wu PC; Liou SYH; Hou CH
    J Hazard Mater; 2022 Feb; 423(Pt A):127084. PubMed ID: 34488095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel mesoporous Co
    Delfani E; Khodabakhshi A; Habibzadeh S; Naji L; Ganjali MR
    RSC Adv; 2021 Dec; 12(2):907-920. PubMed ID: 35425095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing the Impacts of Deposition Techniques on the Performance of MnO
    Hand S; Cusick RD
    Environ Sci Technol; 2017 Oct; 51(20):12027-12034. PubMed ID: 28902989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.
    Mohora E; Rončević S; Dalmacija B; Agbaba J; Watson M; Karlović E; Dalmacija M
    J Hazard Mater; 2012 Oct; 235-236():257-64. PubMed ID: 22902131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene.
    Dursun D; Ozkul S; Yuksel R; Unalan HE
    Water Sci Technol; 2017 Feb; 75(3-4):643-649. PubMed ID: 28192358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced capacitive deionization of graphene/mesoporous carbon composites.
    Zhang D; Wen X; Shi L; Yan T; Zhang J
    Nanoscale; 2012 Sep; 4(17):5440-6. PubMed ID: 22836788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.
    Ma CY; Huang SC; Chou PH; Den W; Hou CH
    Chemosphere; 2016 Mar; 146():113-20. PubMed ID: 26714293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI).
    Tang W; Kovalsky P; Cao B; He D; Waite TD
    Environ Sci Technol; 2016 Oct; 50(19):10570-10579. PubMed ID: 27608070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of carbonaceous materials electrosorption attributes and its performance for capacitive deionization process within the presence of humic acid.
    Thamilselvan A; Govindan K; Nesaraj AS; Maheshwari SU; Noel M
    Environ Sci Pollut Res Int; 2023 Jun; 30(28):71714-71725. PubMed ID: 34318426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of a manganese dioxide/carbon fiber electrode for electrosorptive removal of copper ions from water.
    Hu C; Liu F; Lan H; Liu H; Qu J
    J Colloid Interface Sci; 2015 May; 446():359-65. PubMed ID: 25617054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biobased polyporphyrin derived porous carbon electrodes for highly efficient capacitive deionization.
    Zhang W; Jin C; Shi Z; Zhu L; Chen L; Liu Y; Zhang H
    Chemosphere; 2022 Mar; 291(Pt 3):133113. PubMed ID: 34856237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications.
    Seo SJ; Jeon H; Lee JK; Kim GY; Park D; Nojima H; Lee J; Moon SH
    Water Res; 2010 Apr; 44(7):2267-75. PubMed ID: 19897222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High performance of membrane capacitive deionization with ZnS/g-C
    Wei S; Feng L; Zhang X; Sun Z; Bai H; Liu P
    Water Sci Technol; 2023 Dec; 88(11):2849-2861. PubMed ID: 38096073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.