These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27332854)

  • 41. Designed assembly of Ni/MAX (Ti
    Bharath G; Hai A; Rambabu K; Pazhanivel T; Hasan SW; Banat F
    Chemosphere; 2021 Mar; 266():129048. PubMed ID: 33248725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scaling behavior of iron in capacitive deionization (CDI) system.
    Wang T; Zhang C; Bai L; Xie B; Gan Z; Xing J; Li G; Liang H
    Water Res; 2020 Mar; 171():115370. PubMed ID: 31864131
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization.
    Fan CS; Tseng SC; Li KC; Hou CH
    J Hazard Mater; 2016 Jul; 312():208-215. PubMed ID: 27037475
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of Composite Nanostructured Electrodes for Water Desalination via Membrane Capacitive Deionization.
    Bakola V; Kotrotsiou O; Ntziouni A; Dragatogiannis D; Plakantonaki N; Trapalis C; Charitidis C; Kiparissides C
    Macromol Rapid Commun; 2024 Mar; 45(6):e2300640. PubMed ID: 38184786
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack.
    Rosales M; Coreño O; Nava JL
    Chemosphere; 2018 Nov; 211():149-155. PubMed ID: 30071426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New Operational Modes to Increase Energy Efficiency in Capacitive Deionization Systems.
    García-Quismondo E; Santos C; Soria J; Palma J; Anderson MA
    Environ Sci Technol; 2016 Jun; 50(11):6053-60. PubMed ID: 27167689
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization.
    Zhang J; Ning XA; Li D; Wang Y; Lai X; Ou W
    J Environ Sci (China); 2022 Jan; 111():282-291. PubMed ID: 34949358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes.
    Bhat AP; Reale ER; Del Cerro M; Smith KC; Cusick RD
    Water Res X; 2019 Apr; 3():100027. PubMed ID: 31193985
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using Ultramicroporous Carbon for the Selective Removal of Nitrate with Capacitive Deionization.
    Hawks SA; Cerón MR; Oyarzun DI; Pham TA; Zhan C; Loeb CK; Mew D; Deinhart A; Wood BC; Santiago JG; Stadermann M; Campbell PG
    Environ Sci Technol; 2019 Sep; 53(18):10863-10870. PubMed ID: 31244071
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of Resistances of a Capacitive Deionization System.
    Qu Y; Baumann TF; Santiago JG; Stadermann M
    Environ Sci Technol; 2015 Aug; 49(16):9699-706. PubMed ID: 26214554
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies.
    Bordoloi S; Nath SK; Gogoi S; Dutta RK
    J Hazard Mater; 2013 Sep; 260():618-26. PubMed ID: 23827730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions.
    García-Quismondo E; Santos C; Lado J; Palma J; Anderson MA
    Environ Sci Technol; 2013 Oct; 47(20):11866-72. PubMed ID: 24015835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative Investigation of Activated Carbon Electrode and a Novel Activated Carbon/Graphene Oxide Composite Electrode for an Enhanced Capacitive Deionization.
    Folaranmi G; Bechelany M; Sistat P; Cretin M; Zaviska F
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fabrication of porous graphene electrodes via CO
    Zhang Y; Chen L; Mao S; Sun Z; Song Y; Zhao R
    J Colloid Interface Sci; 2019 Feb; 536():252-260. PubMed ID: 30368097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.
    Amrose S; Gadgil A; Srinivasan V; Kowolik K; Muller M; Huang J; Kostecki R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1019-30. PubMed ID: 23573922
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination.
    Niazi NK; Bibi I; Shahid M; Ok YS; Burton ED; Wang H; Shaheen SM; Rinklebe J; Lüttge A
    Environ Pollut; 2018 Jan; 232():31-41. PubMed ID: 28966026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Capacitative deionization using commercial activated carbon fiber decorated with polyaniline.
    Tian S; Zhang Z; Zhang X; Ken Ostrikov K
    J Colloid Interface Sci; 2019 Mar; 537():247-255. PubMed ID: 30448645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Treatment of groundwater polluted by arsenic compounds by zero valent iron.
    Sun H; Wang L; Zhang R; Sui J; Xu G
    J Hazard Mater; 2006 Feb; 129(1-3):297-303. PubMed ID: 16194593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.