These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27332896)

  • 1. Deceleration processes of secondary electrons produced by a high-energy Auger electron in a biological context.
    Kai T; Yokoya A; Ukai M; Fujii K; Watanabe R
    Int J Radiat Biol; 2016 Nov; 92(11):654-659. PubMed ID: 27332896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Behavior of Secondary Electrons in Liquid Water at the Earliest Stage upon Irradiation: Implications for DNA Damage Localization Mechanism.
    Kai T; Yokoya A; Ukai M; Fujii K; Watanabe R
    J Phys Chem A; 2016 Oct; 120(42):8228-8233. PubMed ID: 27690437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA strand breaks by direct energy deposition by Auger and photo-electrons ejected from DNA constituent atoms following K-shell photoabsorption.
    Watanabe R; Yokoya A; Fujii K; Saito K
    Int J Radiat Biol; 2004; 80(11-12):823-32. PubMed ID: 15764389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of DNA damage induced by Auger electrons from
    Watanabe R; Hattori Y; Kai T
    Int J Radiat Biol; 2016 Nov; 92(11):660-664. PubMed ID: 27010691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A significant role of non-thermal equilibrated electrons in the formation of deleterious complex DNA damage.
    Kai T; Yokoya A; Ukai M; Fujii K; Toigawa T; Watanabe R
    Phys Chem Chem Phys; 2018 Jan; 20(4):2838-2844. PubMed ID: 29327017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA strand breaks induced by electrons simulated with Nanodosimetry Monte Carlo Simulation Code: NASIC.
    Li J; Li C; Qiu R; Yan C; Xie W; Wu Z; Zeng Z; Tung C
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):38-43. PubMed ID: 25883312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of ion clusters by low-energy electrons in nanometric targets: experiment and Monte Carlo simulation.
    Bantsar A; Grosswendt B; Pszona S
    Radiat Prot Dosimetry; 2006; 122(1-4):82-5. PubMed ID: 17251251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron track simulation using ETMICRO.
    Kim EH
    Radiat Prot Dosimetry; 2006; 122(1-4):53-5. PubMed ID: 17182606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical cross sections for electron collisions in water: structure of electron tracks.
    Champion C
    Phys Med Biol; 2003 Jul; 48(14):2147-68. PubMed ID: 12894976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inelastic electron interaction (attachment/ionization) with deoxyribose.
    Ptasińska S; Denifl S; Scheier P; Märk TD
    J Chem Phys; 2004 May; 120(18):8505-11. PubMed ID: 15267776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on Monte Carlo simulations of electron emission from liquid water.
    Mehnaz ; Yang LH; Zou YB; Da B; Mao SF; Li HM; Zhao YF; Ding ZJ
    Med Phys; 2020 Feb; 47(2):759-771. PubMed ID: 31702062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EGS4 Monte Carlo determination of the beta dose kernel in water.
    Simpkin DJ; Mackie TR
    Med Phys; 1990; 17(2):179-86. PubMed ID: 2333044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-induced fragmentation of water droplets: Simulation study.
    Suchan J; Kolafa J; Slavíček P
    J Chem Phys; 2022 Apr; 156(14):144303. PubMed ID: 35428398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles.
    Martínez-Rovira I; Prezado Y
    Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA damage by radiation as a function of electron energy and interaction at the atomic level with Monte Carlo simulation.
    Lamghari Y; Lu H; Bentourkia M
    Z Med Phys; 2023 Nov; 33(4):489-498. PubMed ID: 35973908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of
    Piroozfar B; Raisali G; Alirezapour B; Mirzaii M
    Int J Radiat Biol; 2018 Apr; 94(4):385-393. PubMed ID: 29432072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the consistency of Monte Carlo track structure DNA damage simulations.
    Pater P; Seuntjens J; El Naqa I; Bernal MA
    Med Phys; 2014 Dec; 41(12):121708. PubMed ID: 25471955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron beam transport in heterogeneous slab media from MeV down to eV.
    Yousfi M; Leger J; Loiseau JF; Held B; Eichwald O; Defoort B; Dupillier JM
    Radiat Prot Dosimetry; 2006; 122(1-4):46-52. PubMed ID: 17151011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermalization of subexcitation electrons in solid water.
    Goulet T; Jay-Gerin JP
    Radiat Res; 1989 Apr; 118(1):46-62. PubMed ID: 2704791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.