These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27333052)

  • 1. Isotropic Negative Thermal Expansion Metamaterials.
    Wu L; Li B; Zhou J
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17721-7. PubMed ID: 27333052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Mechanical Metamaterials with Tailorable Negative Poisson's Ratio and Arbitrary Thermal Expansion in Multiple Thermal Deformation Modes.
    Bai Y; Liu C; Li Y; Li J; Qiao L; Zhou J; Bai Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35905-35916. PubMed ID: 35880735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Antichiral Thermomechanical Metamaterials with Continuous Negative Thermal Expansion Properties.
    Saha D; Glanville P; Karpov EG
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion.
    Ni X; Guo X; Li J; Huang Y; Zhang Y; Rogers JA
    Adv Mater; 2019 Nov; 31(48):e1905405. PubMed ID: 31595583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents.
    Qu J; Kadic M; Naber A; Wegener M
    Sci Rep; 2017 Jan; 7():40643. PubMed ID: 28079161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion.
    Wang Q; Jackson JA; Ge Q; Hopkins JB; Spadaccini CM; Fang NX
    Phys Rev Lett; 2016 Oct; 117(17):175901. PubMed ID: 27824463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifunctional Metamaterials Incorporating Unusual Geminations of Poisson's Ratio and Coefficient of Thermal Expansion.
    Han Z; Xiao X; Chen J; Wei K; Wang Z; Yang X; Fang D
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36283006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation mechanism of innovative 3D chiral metamaterials.
    Wu W; Qi D; Liao H; Qian G; Geng L; Niu Y; Liang J
    Sci Rep; 2018 Aug; 8(1):12575. PubMed ID: 30135451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Origami with Highly Tunable Coefficient of Thermal Expansion.
    Ho DT; Park HS; Kim SY; Schwingenschlögl U
    ACS Nano; 2020 Jul; 14(7):8969-8974. PubMed ID: 32538615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origami Metamaterials for Tunable Thermal Expansion.
    Boatti E; Vasios N; Bertoldi K
    Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28466566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lightweight 3D Graphene Metamaterials with Tunable Negative Thermal Expansion.
    He P; Du T; Zhao K; Dong J; Liang Y; Zhang Q
    Adv Mater; 2023 Feb; 35(6):e2208562. PubMed ID: 36433757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion.
    Xu H; Pasini D
    Sci Rep; 2016 Oct; 6():34924. PubMed ID: 27721437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux via Assembly of Unit-Cell Thermal Shifters.
    Park G; Kang S; Lee H; Choi W
    Sci Rep; 2017 Jan; 7():41000. PubMed ID: 28106156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-structured medium with large isotropic negative thermal expansion.
    Cabras L; Brun M; Misseroni D
    Proc Math Phys Eng Sci; 2019 Dec; 475(2232):20190468. PubMed ID: 31892835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macro-Scale Strength and Microstructure of ZrW₂O₈ Cementitious Composites with Tunable Low Thermal Expansion.
    Ouyang J; Li Y; Chen B; Huang D
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29735957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Mechanical Metamaterials with Kirigami-Inspired, Hierarchical Constructions for Giant Positive and Negative Thermal Expansion.
    Guo X; Ni X; Li J; Zhang H; Zhang F; Yu H; Wu J; Bai Y; Lei H; Huang Y; Rogers JA; Zhang Y
    Adv Mater; 2021 Jan; 33(3):e2004919. PubMed ID: 33289278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional optical metamaterial with a negative refractive index.
    Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X
    Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustable positive and negative hygrothermal expansion metamaterial inspired by the Maltese cross.
    Lim TC
    R Soc Open Sci; 2021 Aug; 8(8):210593. PubMed ID: 34386262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Thermal Expansion in 2D and 3D Cellular Materials.
    Zhu H; Fan T; Peng Q; Zhang D
    Adv Mater; 2018 May; 30(18):e1705048. PubMed ID: 29577470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8.
    Tallentire SE; Child F; Fall I; Vella-Zarb L; Evans IR; Tucker MG; Keen DA; Wilson C; Evans JS
    J Am Chem Soc; 2013 Aug; 135(34):12849-56. PubMed ID: 23895493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.