BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27333205)

  • 1. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building.
    Wang Z; Calderón L; Patton AP; Sorensen Allacci M; Senick J; Wener R; Andrews CJ; Mainelis G
    J Air Waste Manag Assoc; 2016 Nov; 66(11):1109-1120. PubMed ID: 27333205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of continuous particle monitors for personal, indoor, and outdoor exposures.
    Wallace LA; Wheeler AJ; Kearney J; Van Ryswyk K; You H; Kulka RH; Rasmussen PE; Brook JR; Xu X
    J Expo Sci Environ Epidemiol; 2011; 21(1):49-64. PubMed ID: 20502493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method.
    Kim JY; Magari SR; Herrick RF; Smith TJ; Christiani DC
    J Occup Environ Hyg; 2004 Nov; 1(11):707-15. PubMed ID: 15673091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the TSI Model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry.
    Cheng YH
    J Occup Environ Hyg; 2008 Mar; 5(3):157-68. PubMed ID: 18188737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles.
    Singer BC; Delp WW
    Indoor Air; 2018 Jul; 28(4):624-639. PubMed ID: 29683219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Workplace aerosol mass concentration measurement using optical particle counters.
    Görner P; Simon X; Bémer D; Lidén G
    J Environ Monit; 2012 Feb; 14(2):420-8. PubMed ID: 22009365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of light scattering devices and impactors for particulate measurements in indoor, outdoor, and personal environments.
    Liu LJ; Slaughter JC; Larson TV
    Environ Sci Technol; 2002 Jul; 36(13):2977-86. PubMed ID: 12144275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory and field evaluation of real-time and near real-time PM
    Mehadi A; Moosmüller H; Campbell DE; Ham W; Schweizer D; Tarnay L; Hunter J
    J Air Waste Manag Assoc; 2020 Feb; 70(2):158-179. PubMed ID: 31403397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in gravimetric correction factors for nephelometer-derived estimates of personal exposure to PM
    Tryner J; Good N; Wilson A; Clark ML; Peel JL; Volckens J
    Environ Pollut; 2019 Jul; 250():251-261. PubMed ID: 30999202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining PM2.5 calibration curves for a low-cost particle monitor: common indoor residential aerosols.
    Dacunto PJ; Klepeis NE; Cheng KC; Acevedo-Bolton V; Jiang RT; Repace JL; Ott WR; Hildemann LM
    Environ Sci Process Impacts; 2015 Nov; 17(11):1959-66. PubMed ID: 26487426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and evaluation of a portable PM
    Tryner J; Quinn C; Windom BC; Volckens J
    Environ Sci Process Impacts; 2019 Aug; 21(8):1403-1415. PubMed ID: 31389929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A feasible experimental framework for field calibration of portable light-scattering aerosol monitors: Case of TSI DustTrak.
    Li Z; Che W; Lau AKH; Fung JCH; Lin C; Lu X
    Environ Pollut; 2019 Dec; 255(Pt 1):113136. PubMed ID: 31522000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.
    Han I; Symanski E; Stock TH
    J Air Waste Manag Assoc; 2017 Mar; 67(3):330-340. PubMed ID: 27690287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a real-time passive personal particle monitor in fixed site residential indoor and ambient measurements.
    Quintana PJ; Samimi BS; Kleinman MT; Liu LJ; Soto K; Warner GY; Bufalino C; Valencia J; Francis D; Hovell MH; Delfino RJ
    J Expo Anal Environ Epidemiol; 2000; 10(5):437-45. PubMed ID: 11051534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of PM
    Li Z; Che W; Frey HC; Lau AKH; Lin C
    Environ Pollut; 2017 Sep; 228():433-442. PubMed ID: 28558284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka.
    Chartier R; Phillips M; Mosquin P; Elledge M; Bronstein K; Nandasena S; Thornburg V; Thornburg J; Rodes C
    Indoor Air; 2017 Jan; 27(1):147-159. PubMed ID: 26797964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of residential indoor PM
    Du Y; Wang Y; Du Z; Zhang Y; Xu D; Li T
    Environ Pollut; 2018 Jul; 238():691-697. PubMed ID: 29621728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation and modeling of the residential infiltration of fine particulate matter in Beijing, China.
    Xu C; Li N; Yang Y; Li Y; Liu Z; Wang Q; Zheng T; Civitarese A; Xu D
    J Air Waste Manag Assoc; 2017 Jun; 67(6):694-701. PubMed ID: 28010179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing.
    Zhan Y; Johnson K; Norris C; Shafer MM; Bergin MH; Zhang Y; Zhang J; Schauer JJ
    Sci Total Environ; 2018 Jun; 626():507-518. PubMed ID: 29396331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.